Welcome to Subscribe On Youtube
3148. Maximum Difference Score in a Grid
Description
You are given an m x n
matrix grid
consisting of positive integers. You can move from a cell in the matrix to any other cell that is either to the bottom or to the right (not necessarily adjacent). The score of a move from a cell with the value c1
to a cell with the value c2
is c2 - c1
.
You can start at any cell, and you have to make at least one move.
Return the maximum total score you can achieve.
Example 1:
Input: grid = [[9,5,7,3],[8,9,6,1],[6,7,14,3],[2,5,3,1]]
Output: 9
Explanation: We start at the cell (0, 1)
, and we perform the following moves:
- Move from the cell (0, 1)
to (2, 1)
with a score of 7 - 5 = 2
.
- Move from the cell (2, 1)
to (2, 2)
with a score of 14 - 7 = 7
.
The total score is 2 + 7 = 9
.
Example 2:
Input: grid = [[4,3,2],[3,2,1]]
Output: -1
Explanation: We start at the cell (0, 0)
, and we perform one move: (0, 0)
to (0, 1)
. The score is 3 - 4 = -1
.
Constraints:
m == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
1 <= grid[i][j] <= 105
Solutions
Solution 1: Dynamic Programming
According to the problem description, if the values of the cells we pass through are $c_1, c_2, \cdots, c_k$, then our score is $c_2 - c_1 + c_3 - c_2 + \cdots + c_k - c_{k-1} = c_k - c_1$. Therefore, the problem is transformed into: for each cell $(i, j)$ of the matrix, if we take it as the endpoint, what is the minimum value of the starting point.
We can use dynamic programming to solve this problem. We define $f[i][j]$ as the minimum value of the path with $(i, j)$ as the endpoint. Then we can get the state transition equation:
\[f[i][j] = \min(f[i-1][j], f[i][j-1], grid[i][j])\]So the answer is the maximum value of $\text{grid}[i][j] - \min(f[i-1][j], f[i][j-1])$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ and $n$ are the number of rows and columns of the matrix, respectively.
-
class Solution { public int maxScore(List<List<Integer>> grid) { int m = grid.size(), n = grid.get(0).size(); final int inf = 1 << 30; int ans = -inf; int[][] f = new int[m][n]; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int mi = inf; if (i > 0) { mi = Math.min(mi, f[i - 1][j]); } if (j > 0) { mi = Math.min(mi, f[i][j - 1]); } ans = Math.max(ans, grid.get(i).get(j) - mi); f[i][j] = Math.min(grid.get(i).get(j), mi); } } return ans; } }
-
class Solution { public: int maxScore(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(); const int inf = 1 << 30; int ans = -inf; int f[m][n]; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int mi = inf; if (i) { mi = min(mi, f[i - 1][j]); } if (j) { mi = min(mi, f[i][j - 1]); } ans = max(ans, grid[i][j] - mi); f[i][j] = min(grid[i][j], mi); } } return ans; } };
-
class Solution: def maxScore(self, grid: List[List[int]]) -> int: f = [[0] * len(grid[0]) for _ in range(len(grid))] ans = -inf for i, row in enumerate(grid): for j, x in enumerate(row): mi = inf if i: mi = min(mi, f[i - 1][j]) if j: mi = min(mi, f[i][j - 1]) ans = max(ans, x - mi) f[i][j] = min(x, mi) return ans
-
func maxScore(grid [][]int) int { m, n := len(grid), len(grid[0]) f := make([][]int, m) for i := range f { f[i] = make([]int, n) } const inf int = 1 << 30 ans := -inf for i, row := range grid { for j, x := range row { mi := inf if i > 0 { mi = min(mi, f[i-1][j]) } if j > 0 { mi = min(mi, f[i][j-1]) } ans = max(ans, x-mi) f[i][j] = min(x, mi) } } return ans }
-
function maxScore(grid: number[][]): number { const [m, n] = [grid.length, grid[0].length]; const f: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0)); let ans = -Infinity; for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { let mi = Infinity; if (i) { mi = Math.min(mi, f[i - 1][j]); } if (j) { mi = Math.min(mi, f[i][j - 1]); } ans = Math.max(ans, grid[i][j] - mi); f[i][j] = Math.min(mi, grid[i][j]); } } return ans; }