Welcome to Subscribe On Youtube

3137. Minimum Number of Operations to Make Word K-Periodic

Description

You are given a string word of size n, and an integer k such that k divides n.

In one operation, you can pick any two indices i and j, that are divisible by k, then replace the substring of length k starting at i with the substring of length k starting at j. That is, replace the substring word[i..i + k - 1] with the substring word[j..j + k - 1].

Return the minimum number of operations required to make word k-periodic.

We say that word is k-periodic if there is some string s of length k such that word can be obtained by concatenating s an arbitrary number of times. For example, if word == “ababab”, then word is 2-periodic for s = "ab".

 

Example 1:

Input: word = "leetcodeleet", k = 4

Output: 1

Explanation:

We can obtain a 4-periodic string by picking i = 4 and j = 0. After this operation, word becomes equal to "leetleetleet".

Example 2:

Input: word = "leetcoleet", k = 2

Output: 3

Explanation:

We can obtain a 2-periodic string by applying the operations in the table below.

i j word
0 2 etetcoleet
4 0 etetetleet
6 0 etetetetet
 

 

Constraints:

  • 1 <= n == word.length <= 105
  • 1 <= k <= word.length
  • k divides word.length.
  • word consists only of lowercase English letters.

Solutions

Solution 1: Counting

We can divide the string word into substrings of length $k$, then count the occurrence of each substring, and finally return $n/k$ minus the count of the most frequently occurring substring.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the string word.

  • class Solution {
        public int minimumOperationsToMakeKPeriodic(String word, int k) {
            Map<String, Integer> cnt = new HashMap<>();
            int n = word.length();
            int mx = 0;
            for (int i = 0; i < n; i += k) {
                mx = Math.max(mx, cnt.merge(word.substring(i, i + k), 1, Integer::sum));
            }
            return n / k - mx;
        }
    }
    
  • class Solution {
    public:
        int minimumOperationsToMakeKPeriodic(string word, int k) {
            unordered_map<string, int> cnt;
            int n = word.size();
            int mx = 0;
            for (int i = 0; i < n; i += k) {
                mx = max(mx, ++cnt[word.substr(i, k)]);
            }
            return n / k - mx;
        }
    };
    
  • class Solution:
        def minimumOperationsToMakeKPeriodic(self, word: str, k: int) -> int:
            n = len(word)
            return n // k - max(Counter(word[i : i + k] for i in range(0, n, k)).values())
    
    
  • func minimumOperationsToMakeKPeriodic(word string, k int) int {
    	cnt := map[string]int{}
    	n := len(word)
    	mx := 0
    	for i := 0; i < n; i += k {
    		s := word[i : i+k]
    		cnt[s]++
    		mx = max(mx, cnt[s])
    	}
    	return n/k - mx
    }
    
  • function minimumOperationsToMakeKPeriodic(word: string, k: number): number {
        const cnt: Map<string, number> = new Map();
        const n: number = word.length;
        let mx: number = 0;
        for (let i = 0; i < n; i += k) {
            const s = word.slice(i, i + k);
            cnt.set(s, (cnt.get(s) || 0) + 1);
            mx = Math.max(mx, cnt.get(s)!);
        }
        return Math.floor(n / k) - mx;
    }
    
    

All Problems

All Solutions