Welcome to Subscribe On Youtube
3129. Find All Possible Stable Binary Arrays I
Description
You are given 3 positive integers zero
, one
, and limit
.
A binary array arr
is called stable if:
- The number of occurrences of 0 in
arr
is exactlyzero
. - The number of occurrences of 1 in
arr
is exactlyone
. - Each subarray of
arr
with a size greater thanlimit
must contain both 0 and 1.
Return the total number of stable binary arrays.
Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: zero = 1, one = 1, limit = 2
Output: 2
Explanation:
The two possible stable binary arrays are [1,0]
and [0,1]
, as both arrays have a single 0 and a single 1, and no subarray has a length greater than 2.
Example 2:
Input: zero = 1, one = 2, limit = 1
Output: 1
Explanation:
The only possible stable binary array is [1,0,1]
.
Note that the binary arrays [1,1,0]
and [0,1,1]
have subarrays of length 2 with identical elements, hence, they are not stable.
Example 3:
Input: zero = 3, one = 3, limit = 2
Output: 14
Explanation:
All the possible stable binary arrays are [0,0,1,0,1,1]
, [0,0,1,1,0,1]
, [0,1,0,0,1,1]
, [0,1,0,1,0,1]
, [0,1,0,1,1,0]
, [0,1,1,0,0,1]
, [0,1,1,0,1,0]
, [1,0,0,1,0,1]
, [1,0,0,1,1,0]
, [1,0,1,0,0,1]
, [1,0,1,0,1,0]
, [1,0,1,1,0,0]
, [1,1,0,0,1,0]
, and [1,1,0,1,0,0]
.
Constraints:
1 <= zero, one, limit <= 200
Solutions
Solution 1: Memoization Search
We design a function $dfs(i, j, k)$ to represent the number of stable binary arrays that satisfy the problem conditions when there are $i$ $0$s and $j$ $1$s left, and the next number to be filled is $k$. The answer is $dfs(zero, one, 0) + dfs(zero, one, 1)$.
The calculation process of the function $dfs(i, j, k)$ is as follows:
- If $i < 0$ or $j < 0$, return $0$.
- If $i = 0$, return $1$ when $k = 1$ and $j \leq \text{limit}$, otherwise return $0$.
- If $j = 0$, return $1$ when $k = 0$ and $i \leq \text{limit}$, otherwise return $0$.
- If $k = 0$, we consider the case where the previous number is $0$, $dfs(i - 1, j, 0)$, and the case where the previous number is $1$, $dfs(i - 1, j, 1)$. If the previous number is $0$, it may cause more than $\text{limit}$ $0$s in the subarray, i.e., the situation where the $\text{limit} + 1$
-
class Solution { private final int mod = (int) 1e9 + 7; private Long[][][] f; private int limit; public int numberOfStableArrays(int zero, int one, int limit) { f = new Long[zero + 1][one + 1][2]; this.limit = limit; return (int) ((dfs(zero, one, 0) + dfs(zero, one, 1)) % mod); } private long dfs(int i, int j, int k) { if (i < 0 || j < 0) { return 0; } if (i == 0) { return k == 1 && j <= limit ? 1 : 0; } if (j == 0) { return k == 0 && i <= limit ? 1 : 0; } if (f[i][j][k] != null) { return f[i][j][k]; } if (k == 0) { f[i][j][k] = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod; } else { f[i][j][k] = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod; } return f[i][j][k]; } }
-
using ll = long long; class Solution { public: int numberOfStableArrays(int zero, int one, int limit) { this->limit = limit; f = vector<vector<array<ll, 2>>>(zero + 1, vector<array<ll, 2>>(one + 1, {-1, -1})); return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod; } private: const int mod = 1e9 + 7; int limit; vector<vector<array<ll, 2>>> f; ll dfs(int i, int j, int k) { if (i < 0 || j < 0) { return 0; } if (i == 0) { return k == 1 && j <= limit; } if (j == 0) { return k == 0 && i <= limit; } ll& res = f[i][j][k]; if (res != -1) { return res; } if (k == 0) { res = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod; } else { res = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod; } return res; } };
-
class Solution: def numberOfStableArrays(self, zero: int, one: int, limit: int) -> int: @cache def dfs(i: int, j: int, k: int) -> int: if i == 0: return int(k == 1 and j <= limit) if j == 0: return int(k == 0 and i <= limit) if k == 0: return ( dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - (0 if i - limit - 1 < 0 else dfs(i - limit - 1, j, 1)) ) return ( dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - (0 if j - limit - 1 < 0 else dfs(i, j - limit - 1, 0)) ) mod = 10**9 + 7 ans = (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod dfs.cache_clear() return ans
-
func numberOfStableArrays(zero int, one int, limit int) int { const mod int = 1e9 + 7 f := make([][][2]int, zero+1) for i := range f { f[i] = make([][2]int, one+1) for j := range f[i] { f[i][j] = [2]int{-1, -1} } } var dfs func(i, j, k int) int dfs = func(i, j, k int) int { if i < 0 || j < 0 { return 0 } if i == 0 { if k == 1 && j <= limit { return 1 } return 0 } if j == 0 { if k == 0 && i <= limit { return 1 } return 0 } res := &f[i][j][k] if *res != -1 { return *res } if k == 0 { *res = (dfs(i-1, j, 0) + dfs(i-1, j, 1) - dfs(i-limit-1, j, 1) + mod) % mod } else { *res = (dfs(i, j-1, 0) + dfs(i, j-1, 1) - dfs(i, j-limit-1, 0) + mod) % mod } return *res } return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod }
-
function numberOfStableArrays(zero: number, one: number, limit: number): number { const mod = 1e9 + 7; const f: number[][][] = Array.from({ length: zero + 1 }, () => Array.from({ length: one + 1 }, () => [-1, -1]), ); const dfs = (i: number, j: number, k: number): number => { if (i < 0 || j < 0) { return 0; } if (i === 0) { return k === 1 && j <= limit ? 1 : 0; } if (j === 0) { return k === 0 && i <= limit ? 1 : 0; } let res = f[i][j][k]; if (res !== -1) { return res; } if (k === 0) { res = (dfs(i - 1, j, 0) + dfs(i - 1, j, 1) - dfs(i - limit - 1, j, 1) + mod) % mod; } else { res = (dfs(i, j - 1, 0) + dfs(i, j - 1, 1) - dfs(i, j - limit - 1, 0) + mod) % mod; } return (f[i][j][k] = res); }; return (dfs(zero, one, 0) + dfs(zero, one, 1)) % mod; }