Welcome to Subscribe On Youtube

3079. Find the Sum of Encrypted Integers

Description

You are given an integer array nums containing positive integers. We define a function encrypt such that encrypt(x) replaces every digit in x with the largest digit in x. For example, encrypt(523) = 555 and encrypt(213) = 333.

Return the sum of encrypted elements.

 

Example 1:

Input: nums = [1,2,3]

Output: 6

Explanation: The encrypted elements are [1,2,3]. The sum of encrypted elements is 1 + 2 + 3 == 6.

Example 2:

Input: nums = [10,21,31]

Output: 66

Explanation: The encrypted elements are [11,22,33]. The sum of encrypted elements is 11 + 22 + 33 == 66.

 

Constraints:

  • 1 <= nums.length <= 50
  • 1 <= nums[i] <= 1000

Solutions

Solution 1: Simulation

We directly simulate the encryption process by defining a function $encrypt(x)$, which replaces each digit in an integer $x$ with the maximum digit in $x$. The implementation of the function is as follows:

We can obtain each digit of $x$ by continuously taking the modulus and integer division of $x$ by $10$, and find the maximum digit, denoted as $mx$. During the loop, we can also use a variable $p$ to record the base number of $mx$, i.e., $p = 1, 11, 111, \cdots$. Finally, return $mx \times p$.

The time complexity is $O(n \times \log M)$, where $n$ is the length of the array, and $M$ is the maximum value in the array. The space complexity is $O(1)$.

  • class Solution {
        public int sumOfEncryptedInt(int[] nums) {
            int ans = 0;
            for (int x : nums) {
                ans += encrypt(x);
            }
            return ans;
        }
    
        private int encrypt(int x) {
            int mx = 0, p = 0;
            for (; x > 0; x /= 10) {
                mx = Math.max(mx, x % 10);
                p = p * 10 + 1;
            }
            return mx * p;
        }
    }
    
  • class Solution {
    public:
        int sumOfEncryptedInt(vector<int>& nums) {
            auto encrypt = [&](int x) {
                int mx = 0, p = 0;
                for (; x; x /= 10) {
                    mx = max(mx, x % 10);
                    p = p * 10 + 1;
                }
                return mx * p;
            };
            int ans = 0;
            for (int x : nums) {
                ans += encrypt(x);
            }
            return ans;
        }
    };
    
  • class Solution:
        def sumOfEncryptedInt(self, nums: List[int]) -> int:
            def encrypt(x: int) -> int:
                mx = p = 0
                while x:
                    x, v = divmod(x, 10)
                    mx = max(mx, v)
                    p = p * 10 + 1
                return mx * p
    
            return sum(encrypt(x) for x in nums)
    
    
  • func sumOfEncryptedInt(nums []int) (ans int) {
    	encrypt := func(x int) int {
    		mx, p := 0, 0
    		for ; x > 0; x /= 10 {
    			mx = max(mx, x%10)
    			p = p*10 + 1
    		}
    		return mx * p
    	}
    	for _, x := range nums {
    		ans += encrypt(x)
    	}
    	return
    }
    
  • function sumOfEncryptedInt(nums: number[]): number {
        const encrypt = (x: number): number => {
            let [mx, p] = [0, 0];
            for (; x > 0; x = Math.floor(x / 10)) {
                mx = Math.max(mx, x % 10);
                p = p * 10 + 1;
            }
            return mx * p;
        };
        return nums.reduce((acc, x) => acc + encrypt(x), 0);
    }
    
    

All Problems

All Solutions