Welcome to Subscribe On Youtube
3079. Find the Sum of Encrypted Integers
Description
You are given an integer array nums
containing positive integers. We define a function encrypt
such that encrypt(x)
replaces every digit in x
with the largest digit in x
. For example, encrypt(523) = 555
and encrypt(213) = 333
.
Return the sum of encrypted elements.
Example 1:
Input: nums = [1,2,3]
Output: 6
Explanation: The encrypted elements are [1,2,3]
. The sum of encrypted elements is 1 + 2 + 3 == 6
.
Example 2:
Input: nums = [10,21,31]
Output: 66
Explanation: The encrypted elements are [11,22,33]
. The sum of encrypted elements is 11 + 22 + 33 == 66
.
Constraints:
1 <= nums.length <= 50
1 <= nums[i] <= 1000
Solutions
Solution 1: Simulation
We directly simulate the encryption process by defining a function $encrypt(x)$, which replaces each digit in an integer $x$ with the maximum digit in $x$. The implementation of the function is as follows:
We can obtain each digit of $x$ by continuously taking the modulus and integer division of $x$ by $10$, and find the maximum digit, denoted as $mx$. During the loop, we can also use a variable $p$ to record the base number of $mx$, i.e., $p = 1, 11, 111, \cdots$. Finally, return $mx \times p$.
The time complexity is $O(n \times \log M)$, where $n$ is the length of the array, and $M$ is the maximum value in the array. The space complexity is $O(1)$.
-
class Solution { public int sumOfEncryptedInt(int[] nums) { int ans = 0; for (int x : nums) { ans += encrypt(x); } return ans; } private int encrypt(int x) { int mx = 0, p = 0; for (; x > 0; x /= 10) { mx = Math.max(mx, x % 10); p = p * 10 + 1; } return mx * p; } }
-
class Solution { public: int sumOfEncryptedInt(vector<int>& nums) { auto encrypt = [&](int x) { int mx = 0, p = 0; for (; x; x /= 10) { mx = max(mx, x % 10); p = p * 10 + 1; } return mx * p; }; int ans = 0; for (int x : nums) { ans += encrypt(x); } return ans; } };
-
class Solution: def sumOfEncryptedInt(self, nums: List[int]) -> int: def encrypt(x: int) -> int: mx = p = 0 while x: x, v = divmod(x, 10) mx = max(mx, v) p = p * 10 + 1 return mx * p return sum(encrypt(x) for x in nums)
-
func sumOfEncryptedInt(nums []int) (ans int) { encrypt := func(x int) int { mx, p := 0, 0 for ; x > 0; x /= 10 { mx = max(mx, x%10) p = p*10 + 1 } return mx * p } for _, x := range nums { ans += encrypt(x) } return }
-
function sumOfEncryptedInt(nums: number[]): number { const encrypt = (x: number): number => { let [mx, p] = [0, 0]; for (; x > 0; x = Math.floor(x / 10)) { mx = Math.max(mx, x % 10); p = p * 10 + 1; } return mx * p; }; return nums.reduce((acc, x) => acc + encrypt(x), 0); }