Welcome to Subscribe On Youtube
3063. Linked List Frequency
Description
Given the head
of a linked list containing k
distinct elements, return the head to a linked list of length k
containing the frequency of each distinct element in the given linked list in any order.
Example 1:
Input: head = [1,1,2,1,2,3]
Output: [3,2,1]
Explanation: There are 3
distinct elements in the list. The frequency of 1
is 3
, the frequency of 2
is 2
and the frequency of 3
is 1
. Hence, we return 3 -> 2 -> 1
.
Note that 1 -> 2 -> 3
, 1 -> 3 -> 2
, 2 -> 1 -> 3
, 2 -> 3 -> 1
, and 3 -> 1 -> 2
are also valid answers.
Example 2:
Input: head = [1,1,2,2,2]
Output: [2,3]
Explanation: There are 2
distinct elements in the list. The frequency of 1
is 2
and the frequency of 2
is 3
. Hence, we return 2 -> 3
.
Example 3:
Input: head = [6,5,4,3,2,1]
Output: [1,1,1,1,1,1]
Explanation: There are 6
distinct elements in the list. The frequency of each of them is 1
. Hence, we return 1 -> 1 -> 1 -> 1 -> 1 -> 1
.
Constraints:
- The number of nodes in the list is in the range
[1, 105]
. 1 <= Node.val <= 105
Solutions
Solution 1: Hash Table
We use a hash table cnt
to record the occurrence times of each element value in the linked list, then traverse the values of the hash table to construct a new linked list.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the linked list.
-
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode frequenciesOfElements(ListNode head) { Map<Integer, Integer> cnt = new HashMap<>(); for (; head != null; head = head.next) { cnt.merge(head.val, 1, Integer::sum); } ListNode dummy = new ListNode(); for (int val : cnt.values()) { dummy.next = new ListNode(val, dummy.next); } return dummy.next; } }
-
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode() : val(0), next(nullptr) {} * ListNode(int x) : val(x), next(nullptr) {} * ListNode(int x, ListNode *next) : val(x), next(next) {} * }; */ class Solution { public: ListNode* frequenciesOfElements(ListNode* head) { unordered_map<int, int> cnt; for (; head; head = head->next) { cnt[head->val]++; } ListNode* dummy = new ListNode(); for (auto& [_, val] : cnt) { dummy->next = new ListNode(val, dummy->next); } return dummy->next; } };
-
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def frequenciesOfElements(self, head: Optional[ListNode]) -> Optional[ListNode]: cnt = Counter() while head: cnt[head.val] += 1 head = head.next dummy = ListNode() for val in cnt.values(): dummy.next = ListNode(val, dummy.next) return dummy.next
-
/** * Definition for singly-linked list. * type ListNode struct { * Val int * Next *ListNode * } */ func frequenciesOfElements(head *ListNode) *ListNode { cnt := map[int]int{} for ; head != nil; head = head.Next { cnt[head.Val]++ } dummy := &ListNode{} for _, val := range cnt { dummy.Next = &ListNode{val, dummy.Next} } return dummy.Next }
-
/** * Definition for singly-linked list. * class ListNode { * val: number * next: ListNode | null * constructor(val?: number, next?: ListNode | null) { * this.val = (val===undefined ? 0 : val) * this.next = (next===undefined ? null : next) * } * } */ function frequenciesOfElements(head: ListNode | null): ListNode | null { const cnt: Map<number, number> = new Map(); for (; head; head = head.next) { cnt.set(head.val, (cnt.get(head.val) || 0) + 1); } const dummy = new ListNode(); for (const val of cnt.values()) { dummy.next = new ListNode(val, dummy.next); } return dummy.next; }