Welcome to Subscribe On Youtube

3045. Count Prefix and Suffix Pairs II

Description

You are given a 0-indexed string array words.

Let's define a boolean function isPrefixAndSuffix that takes two strings, str1 and str2:

  • isPrefixAndSuffix(str1, str2) returns true if str1 is both a prefix and a suffix of str2, and false otherwise.

For example, isPrefixAndSuffix("aba", "ababa") is true because "aba" is a prefix of "ababa" and also a suffix, but isPrefixAndSuffix("abc", "abcd") is false.

Return an integer denoting the number of index pairs (i, j) such that i < j, and isPrefixAndSuffix(words[i], words[j]) is true.

 

Example 1:

Input: words = ["a","aba","ababa","aa"]
Output: 4
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("a", "aba") is true.
i = 0 and j = 2 because isPrefixAndSuffix("a", "ababa") is true.
i = 0 and j = 3 because isPrefixAndSuffix("a", "aa") is true.
i = 1 and j = 2 because isPrefixAndSuffix("aba", "ababa") is true.
Therefore, the answer is 4.

Example 2:

Input: words = ["pa","papa","ma","mama"]
Output: 2
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("pa", "papa") is true.
i = 2 and j = 3 because isPrefixAndSuffix("ma", "mama") is true.
Therefore, the answer is 2.  

Example 3:

Input: words = ["abab","ab"]
Output: 0
Explanation: In this example, the only valid index pair is i = 0 and j = 1, and isPrefixAndSuffix("abab", "ab") is false.
Therefore, the answer is 0.

 

Constraints:

  • 1 <= words.length <= 105
  • 1 <= words[i].length <= 105
  • words[i] consists only of lowercase English letters.
  • The sum of the lengths of all words[i] does not exceed 5 * 105.

Solutions

Solution 1: Trie

We can treat each string $s$ in the string array as a list of character pairs, where each character pair $(s[i], s[m - i - 1])$ represents the $i$th character pair of the prefix and suffix of string $s$.

We can use a trie to store all the character pairs, and then for each string $s$, we search for all the character pairs $(s[i], s[m - i - 1])$ in the trie, and add their counts to the answer.

The time complexity is $O(n \times m)$, and the space complexity is $O(n \times m)$. Here, $n$ and $m$ are the lengths of words and the maximum length of the strings, respectively.

  • class Node {
        Map<Integer, Node> children = new HashMap<>();
        int cnt;
    }
    
    class Solution {
        public long countPrefixSuffixPairs(String[] words) {
            long ans = 0;
            Node trie = new Node();
            for (String s : words) {
                Node node = trie;
                int m = s.length();
                for (int i = 0; i < m; ++i) {
                    int p = s.charAt(i) * 32 + s.charAt(m - i - 1);
                    node.children.putIfAbsent(p, new Node());
                    node = node.children.get(p);
                    ans += node.cnt;
                }
                ++node.cnt;
            }
            return ans;
        }
    }
    
  • class Node {
    public:
        unordered_map<int, Node*> children;
        int cnt;
    
        Node()
            : cnt(0) {}
    };
    
    class Solution {
    public:
        long long countPrefixSuffixPairs(vector<string>& words) {
            long long ans = 0;
            Node* trie = new Node();
            for (const string& s : words) {
                Node* node = trie;
                int m = s.length();
                for (int i = 0; i < m; ++i) {
                    int p = s[i] * 32 + s[m - i - 1];
                    if (node->children.find(p) == node->children.end()) {
                        node->children[p] = new Node();
                    }
                    node = node->children[p];
                    ans += node->cnt;
                }
                ++node->cnt;
            }
            return ans;
        }
    };
    
  • class Node:
        __slots__ = ["children", "cnt"]
    
        def __init__(self):
            self.children = {}
            self.cnt = 0
    
    
    class Solution:
        def countPrefixSuffixPairs(self, words: List[str]) -> int:
            ans = 0
            trie = Node()
            for s in words:
                node = trie
                for p in zip(s, reversed(s)):
                    if p not in node.children:
                        node.children[p] = Node()
                    node = node.children[p]
                    ans += node.cnt
                node.cnt += 1
            return ans
    
    
  • type Node struct {
    	children map[int]*Node
    	cnt      int
    }
    
    func countPrefixSuffixPairs(words []string) (ans int64) {
    	trie := &Node{children: make(map[int]*Node)}
    	for _, s := range words {
    		node := trie
    		m := len(s)
    		for i := 0; i < m; i++ {
    			p := int(s[i])*32 + int(s[m-i-1])
    			if _, ok := node.children[p]; !ok {
    				node.children[p] = &Node{children: make(map[int]*Node)}
    			}
    			node = node.children[p]
    			ans += int64(node.cnt)
    		}
    		node.cnt++
    	}
    	return
    }
    
  • class Node {
        children: Map<number, Node> = new Map<number, Node>();
        cnt: number = 0;
    }
    
    function countPrefixSuffixPairs(words: string[]): number {
        let ans: number = 0;
        const trie: Node = new Node();
        for (const s of words) {
            let node: Node = trie;
            const m: number = s.length;
            for (let i: number = 0; i < m; ++i) {
                const p: number = s.charCodeAt(i) * 32 + s.charCodeAt(m - i - 1);
                if (!node.children.has(p)) {
                    node.children.set(p, new Node());
                }
                node = node.children.get(p)!;
                ans += node.cnt;
            }
            ++node.cnt;
        }
        return ans;
    }
    
    

All Problems

All Solutions