Welcome to Subscribe On Youtube
3045. Count Prefix and Suffix Pairs II
Description
You are given a 0-indexed string array words.
Let's define a boolean function isPrefixAndSuffix that takes two strings, str1 and str2:
isPrefixAndSuffix(str1, str2)returnstrueifstr1is both a prefix and a suffix ofstr2, andfalseotherwise.
For example, isPrefixAndSuffix("aba", "ababa") is true because "aba" is a prefix of "ababa" and also a suffix, but isPrefixAndSuffix("abc", "abcd") is false.
Return an integer denoting the number of index pairs (i, j) such that i < j, and isPrefixAndSuffix(words[i], words[j]) is true.
Example 1:
Input: words = ["a","aba","ababa","aa"]
Output: 4
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("a", "aba") is true.
i = 0 and j = 2 because isPrefixAndSuffix("a", "ababa") is true.
i = 0 and j = 3 because isPrefixAndSuffix("a", "aa") is true.
i = 1 and j = 2 because isPrefixAndSuffix("aba", "ababa") is true.
Therefore, the answer is 4.
Example 2:
Input: words = ["pa","papa","ma","mama"]
Output: 2
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("pa", "papa") is true.
i = 2 and j = 3 because isPrefixAndSuffix("ma", "mama") is true.
Therefore, the answer is 2.
Example 3:
Input: words = ["abab","ab"]
Output: 0
Explanation: In this example, the only valid index pair is i = 0 and j = 1, and isPrefixAndSuffix("abab", "ab") is false.
Therefore, the answer is 0.
Constraints:
1 <= words.length <= 1051 <= words[i].length <= 105words[i]consists only of lowercase English letters.- The sum of the lengths of all
words[i]does not exceed5 * 105.
Solutions
Solution 1: Trie
We can treat each string $s$ in the string array as a list of character pairs, where each character pair $(s[i], s[m - i - 1])$ represents the $i$th character pair of the prefix and suffix of string $s$.
We can use a trie to store all the character pairs, and then for each string $s$, we search for all the character pairs $(s[i], s[m - i - 1])$ in the trie, and add their counts to the answer.
The time complexity is $O(n \times m)$, and the space complexity is $O(n \times m)$. Here, $n$ and $m$ are the lengths of words and the maximum length of the strings, respectively.
-
class Node { Map<Integer, Node> children = new HashMap<>(); int cnt; } class Solution { public long countPrefixSuffixPairs(String[] words) { long ans = 0; Node trie = new Node(); for (String s : words) { Node node = trie; int m = s.length(); for (int i = 0; i < m; ++i) { int p = s.charAt(i) * 32 + s.charAt(m - i - 1); node.children.putIfAbsent(p, new Node()); node = node.children.get(p); ans += node.cnt; } ++node.cnt; } return ans; } } -
class Node { public: unordered_map<int, Node*> children; int cnt; Node() : cnt(0) {} }; class Solution { public: long long countPrefixSuffixPairs(vector<string>& words) { long long ans = 0; Node* trie = new Node(); for (const string& s : words) { Node* node = trie; int m = s.length(); for (int i = 0; i < m; ++i) { int p = s[i] * 32 + s[m - i - 1]; if (node->children.find(p) == node->children.end()) { node->children[p] = new Node(); } node = node->children[p]; ans += node->cnt; } ++node->cnt; } return ans; } }; -
class Node: __slots__ = ["children", "cnt"] def __init__(self): self.children = {} self.cnt = 0 class Solution: def countPrefixSuffixPairs(self, words: List[str]) -> int: ans = 0 trie = Node() for s in words: node = trie for p in zip(s, reversed(s)): if p not in node.children: node.children[p] = Node() node = node.children[p] ans += node.cnt node.cnt += 1 return ans -
type Node struct { children map[int]*Node cnt int } func countPrefixSuffixPairs(words []string) (ans int64) { trie := &Node{children: make(map[int]*Node)} for _, s := range words { node := trie m := len(s) for i := 0; i < m; i++ { p := int(s[i])*32 + int(s[m-i-1]) if _, ok := node.children[p]; !ok { node.children[p] = &Node{children: make(map[int]*Node)} } node = node.children[p] ans += int64(node.cnt) } node.cnt++ } return } -
class Node { children: Map<number, Node> = new Map<number, Node>(); cnt: number = 0; } function countPrefixSuffixPairs(words: string[]): number { let ans: number = 0; const trie: Node = new Node(); for (const s of words) { let node: Node = trie; const m: number = s.length; for (let i: number = 0; i < m; ++i) { const p: number = s.charCodeAt(i) * 32 + s.charCodeAt(m - i - 1); if (!node.children.has(p)) { node.children.set(p, new Node()); } node = node.children.get(p)!; ans += node.cnt; } ++node.cnt; } return ans; }