Welcome to Subscribe On Youtube
3042. Count Prefix and Suffix Pairs I
Description
You are given a 0-indexed string array words.
Let's define a boolean function isPrefixAndSuffix that takes two strings, str1 and str2:
isPrefixAndSuffix(str1, str2)returnstrueifstr1is both a prefix and a suffix ofstr2, andfalseotherwise.
For example, isPrefixAndSuffix("aba", "ababa") is true because "aba" is a prefix of "ababa" and also a suffix, but isPrefixAndSuffix("abc", "abcd") is false.
Return an integer denoting the number of index pairs (i, j) such that i < j, and isPrefixAndSuffix(words[i], words[j]) is true.
Example 1:
Input: words = ["a","aba","ababa","aa"]
Output: 4
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("a", "aba") is true.
i = 0 and j = 2 because isPrefixAndSuffix("a", "ababa") is true.
i = 0 and j = 3 because isPrefixAndSuffix("a", "aa") is true.
i = 1 and j = 2 because isPrefixAndSuffix("aba", "ababa") is true.
Therefore, the answer is 4.
Example 2:
Input: words = ["pa","papa","ma","mama"]
Output: 2
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("pa", "papa") is true.
i = 2 and j = 3 because isPrefixAndSuffix("ma", "mama") is true.
Therefore, the answer is 2.
Example 3:
Input: words = ["abab","ab"]
Output: 0
Explanation: In this example, the only valid index pair is i = 0 and j = 1, and isPrefixAndSuffix("abab", "ab") is false.
Therefore, the answer is 0.
Constraints:
1 <= words.length <= 501 <= words[i].length <= 10words[i]consists only of lowercase English letters.
Solutions
Solution 1: Enumeration
We can enumerate all index pairs $(i, j)$, where $i < j$, and then determine whether words[i] is a prefix or suffix of words[j]. If it is, we increment the count.
The time complexity is $O(n^2 \times m)$, where $n$ and $m$ are the length of words and the maximum length of the strings, respectively.
-
class Solution { public int countPrefixSuffixPairs(String[] words) { int ans = 0; int n = words.length; for (int i = 0; i < n; ++i) { String s = words[i]; for (int j = i + 1; j < n; ++j) { String t = words[j]; if (t.startsWith(s) && t.endsWith(s)) { ++ans; } } } return ans; } } -
class Solution { public: int countPrefixSuffixPairs(vector<string>& words) { int ans = 0; int n = words.size(); for (int i = 0; i < n; ++i) { string s = words[i]; for (int j = i + 1; j < n; ++j) { string t = words[j]; if (t.find(s) == 0 && t.rfind(s) == t.length() - s.length()) { ++ans; } } } return ans; } }; -
class Solution: def countPrefixSuffixPairs(self, words: List[str]) -> int: ans = 0 for i, s in enumerate(words): for t in words[i + 1 :]: ans += t.endswith(s) and t.startswith(s) return ans -
func countPrefixSuffixPairs(words []string) (ans int) { for i, s := range words { for _, t := range words[i+1:] { if strings.HasPrefix(t, s) && strings.HasSuffix(t, s) { ans++ } } } return } -
function countPrefixSuffixPairs(words: string[]): number { let ans = 0; for (let i = 0; i < words.length; ++i) { const s = words[i]; for (const t of words.slice(i + 1)) { if (t.startsWith(s) && t.endsWith(s)) { ++ans; } } } return ans; }