Welcome to Subscribe On Youtube
3042. Count Prefix and Suffix Pairs I
Description
You are given a 0-indexed string array words
.
Let's define a boolean function isPrefixAndSuffix
that takes two strings, str1
and str2
:
isPrefixAndSuffix(str1, str2)
returnstrue
ifstr1
is both a prefix and a suffix ofstr2
, andfalse
otherwise.
For example, isPrefixAndSuffix("aba", "ababa")
is true
because "aba"
is a prefix of "ababa"
and also a suffix, but isPrefixAndSuffix("abc", "abcd")
is false
.
Return an integer denoting the number of index pairs (i, j)
such that i < j
, and isPrefixAndSuffix(words[i], words[j])
is true
.
Example 1:
Input: words = ["a","aba","ababa","aa"] Output: 4 Explanation: In this example, the counted index pairs are: i = 0 and j = 1 because isPrefixAndSuffix("a", "aba") is true. i = 0 and j = 2 because isPrefixAndSuffix("a", "ababa") is true. i = 0 and j = 3 because isPrefixAndSuffix("a", "aa") is true. i = 1 and j = 2 because isPrefixAndSuffix("aba", "ababa") is true. Therefore, the answer is 4.
Example 2:
Input: words = ["pa","papa","ma","mama"] Output: 2 Explanation: In this example, the counted index pairs are: i = 0 and j = 1 because isPrefixAndSuffix("pa", "papa") is true. i = 2 and j = 3 because isPrefixAndSuffix("ma", "mama") is true. Therefore, the answer is 2.
Example 3:
Input: words = ["abab","ab"] Output: 0 Explanation: In this example, the only valid index pair is i = 0 and j = 1, and isPrefixAndSuffix("abab", "ab") is false. Therefore, the answer is 0.
Constraints:
1 <= words.length <= 50
1 <= words[i].length <= 10
words[i]
consists only of lowercase English letters.
Solutions
Solution 1: Enumeration
We can enumerate all index pairs $(i, j)$, where $i < j$, and then determine whether words[i]
is a prefix or suffix of words[j]
. If it is, we increment the count.
The time complexity is $O(n^2 \times m)$, where $n$ and $m$ are the length of words
and the maximum length of the strings, respectively.
-
class Solution { public int countPrefixSuffixPairs(String[] words) { int ans = 0; int n = words.length; for (int i = 0; i < n; ++i) { String s = words[i]; for (int j = i + 1; j < n; ++j) { String t = words[j]; if (t.startsWith(s) && t.endsWith(s)) { ++ans; } } } return ans; } }
-
class Solution { public: int countPrefixSuffixPairs(vector<string>& words) { int ans = 0; int n = words.size(); for (int i = 0; i < n; ++i) { string s = words[i]; for (int j = i + 1; j < n; ++j) { string t = words[j]; if (t.find(s) == 0 && t.rfind(s) == t.length() - s.length()) { ++ans; } } } return ans; } };
-
class Solution: def countPrefixSuffixPairs(self, words: List[str]) -> int: ans = 0 for i, s in enumerate(words): for t in words[i + 1 :]: ans += t.endswith(s) and t.startswith(s) return ans
-
func countPrefixSuffixPairs(words []string) (ans int) { for i, s := range words { for _, t := range words[i+1:] { if strings.HasPrefix(t, s) && strings.HasSuffix(t, s) { ans++ } } } return }
-
function countPrefixSuffixPairs(words: string[]): number { let ans = 0; for (let i = 0; i < words.length; ++i) { const s = words[i]; for (const t of words.slice(i + 1)) { if (t.startsWith(s) && t.endsWith(s)) { ++ans; } } } return ans; }