Welcome to Subscribe On Youtube

3042. Count Prefix and Suffix Pairs I

Description

You are given a 0-indexed string array words.

Let's define a boolean function isPrefixAndSuffix that takes two strings, str1 and str2:

  • isPrefixAndSuffix(str1, str2) returns true if str1 is both a prefix and a suffix of str2, and false otherwise.

For example, isPrefixAndSuffix("aba", "ababa") is true because "aba" is a prefix of "ababa" and also a suffix, but isPrefixAndSuffix("abc", "abcd") is false.

Return an integer denoting the number of index pairs (i, j) such that i < j, and isPrefixAndSuffix(words[i], words[j]) is true.

 

Example 1:

Input: words = ["a","aba","ababa","aa"]
Output: 4
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("a", "aba") is true.
i = 0 and j = 2 because isPrefixAndSuffix("a", "ababa") is true.
i = 0 and j = 3 because isPrefixAndSuffix("a", "aa") is true.
i = 1 and j = 2 because isPrefixAndSuffix("aba", "ababa") is true.
Therefore, the answer is 4.

Example 2:

Input: words = ["pa","papa","ma","mama"]
Output: 2
Explanation: In this example, the counted index pairs are:
i = 0 and j = 1 because isPrefixAndSuffix("pa", "papa") is true.
i = 2 and j = 3 because isPrefixAndSuffix("ma", "mama") is true.
Therefore, the answer is 2.  

Example 3:

Input: words = ["abab","ab"]
Output: 0
Explanation: In this example, the only valid index pair is i = 0 and j = 1, and isPrefixAndSuffix("abab", "ab") is false.
Therefore, the answer is 0.

 

Constraints:

  • 1 <= words.length <= 50
  • 1 <= words[i].length <= 10
  • words[i] consists only of lowercase English letters.

Solutions

Solution 1: Enumeration

We can enumerate all index pairs $(i, j)$, where $i < j$, and then determine whether words[i] is a prefix or suffix of words[j]. If it is, we increment the count.

The time complexity is $O(n^2 \times m)$, where $n$ and $m$ are the length of words and the maximum length of the strings, respectively.

  • class Solution {
        public int countPrefixSuffixPairs(String[] words) {
            int ans = 0;
            int n = words.length;
            for (int i = 0; i < n; ++i) {
                String s = words[i];
                for (int j = i + 1; j < n; ++j) {
                    String t = words[j];
                    if (t.startsWith(s) && t.endsWith(s)) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int countPrefixSuffixPairs(vector<string>& words) {
            int ans = 0;
            int n = words.size();
            for (int i = 0; i < n; ++i) {
                string s = words[i];
                for (int j = i + 1; j < n; ++j) {
                    string t = words[j];
                    if (t.find(s) == 0 && t.rfind(s) == t.length() - s.length()) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def countPrefixSuffixPairs(self, words: List[str]) -> int:
            ans = 0
            for i, s in enumerate(words):
                for t in words[i + 1 :]:
                    ans += t.endswith(s) and t.startswith(s)
            return ans
    
    
  • func countPrefixSuffixPairs(words []string) (ans int) {
    	for i, s := range words {
    		for _, t := range words[i+1:] {
    			if strings.HasPrefix(t, s) && strings.HasSuffix(t, s) {
    				ans++
    			}
    		}
    	}
    	return
    }
    
  • function countPrefixSuffixPairs(words: string[]): number {
        let ans = 0;
        for (let i = 0; i < words.length; ++i) {
            const s = words[i];
            for (const t of words.slice(i + 1)) {
                if (t.startsWith(s) && t.endsWith(s)) {
                    ++ans;
                }
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions