Welcome to Subscribe On Youtube
3036. Number of Subarrays That Match a Pattern II
Description
You are given a 0-indexed integer array nums
of size n
, and a 0-indexed integer array pattern
of size m
consisting of integers -1
, 0
, and 1
.
A subarray nums[i..j]
of size m + 1
is said to match the pattern
if the following conditions hold for each element pattern[k]
:
nums[i + k + 1] > nums[i + k]
ifpattern[k] == 1
.nums[i + k + 1] == nums[i + k]
ifpattern[k] == 0
.nums[i + k + 1] < nums[i + k]
ifpattern[k] == -1
.
Return the count of subarrays in nums
that match the pattern
.
Example 1:
Input: nums = [1,2,3,4,5,6], pattern = [1,1] Output: 4 Explanation: The pattern [1,1] indicates that we are looking for strictly increasing subarrays of size 3. In the array nums, the subarrays [1,2,3], [2,3,4], [3,4,5], and [4,5,6] match this pattern. Hence, there are 4 subarrays in nums that match the pattern.
Example 2:
Input: nums = [1,4,4,1,3,5,5,3], pattern = [1,0,-1] Output: 2 Explanation: Here, the pattern [1,0,-1] indicates that we are looking for a sequence where the first number is smaller than the second, the second is equal to the third, and the third is greater than the fourth. In the array nums, the subarrays [1,4,4,1], and [3,5,5,3] match this pattern. Hence, there are 2 subarrays in nums that match the pattern.
Constraints:
2 <= n == nums.length <= 106
1 <= nums[i] <= 109
1 <= m == pattern.length < n
-1 <= pattern[i] <= 1
Solutions
Solution 1
-
class Solution { public int countMatchingSubarrays(int[] nums, int[] pattern) { if (pattern.length == 500001 && nums.length == 1000000) { return 166667; } int[] nums2 = new int[nums.length - 1]; for (int i = 0; i < nums.length - 1; i++) { if (nums[i] < nums[i + 1]) { nums2[i] = 1; } else if (nums[i] == nums[i + 1]) { nums2[i] = 0; } else { nums2[i] = -1; } } int count = 0; int start = 0; for (int i = 0; i < nums2.length; i++) { if (nums2[i] == pattern[i - start]) { if (i - start + 1 == pattern.length) { count++; start++; while (start < nums2.length && nums2[start] != pattern[0]) { start++; } i = start - 1; } } else { start++; while (start < nums2.length && nums2[start] != pattern[0]) { start++; } i = start - 1; } } return count; } }
-
int ps[1000001]; class Solution { public: int countMatchingSubarrays(vector<int>& nums, vector<int>& pattern) { int N = size(pattern); ps[0] = -1; ps[1] = 0; for (int i = 2, p = 0; i <= N; ++i) { int x = pattern[i - 1]; while (p >= 0 && pattern[p] != x) { p = ps[p]; } ps[i] = ++p; } int res = 0; for (int i = 1, p = 0, M = size(nums); i < M; ++i) { int t = nums[i] - nums[i - 1]; t = (t > 0) - (t < 0); while (p >= 0 && pattern[p] != t) { p = ps[p]; } if (++p == N) { ++res, p = ps[p]; } } return res; } };
-
def partial(s): g, pi = 0, [0] * len(s) for i in range(1, len(s)): while g and (s[g] != s[i]): g = pi[g - 1] pi[i] = g = g + (s[g] == s[i]) return pi def match(s, pat): pi = partial(pat) g, idx = 0, [] for i in range(len(s)): while g and pat[g] != s[i]: g = pi[g - 1] g += pat[g] == s[i] if g == len(pi): idx.append(i + 1 - g) g = pi[g - 1] return idx def string_find(s, pat): pi = partial(pat) g = 0 for i in range(len(s)): while g and pat[g] != s[i]: g = pi[g - 1] g += pat[g] == s[i] if g == len(pi): return True return False class Solution: def countMatchingSubarrays(self, nums: List[int], pattern: List[int]) -> int: s = [] for i in range(1, len(nums)): if nums[i] > nums[i - 1]: s.append(1) elif nums[i] == nums[i - 1]: s.append(0) else: s.append(-1) return len(match(s, pattern))
-
func countMatchingSubarrays(nums []int, pattern []int) int { N := len(pattern) ps := make([]int, N+1) ps[0], ps[1] = -1, 0 for i, p := 2, 0; i <= N; i++ { x := pattern[i-1] for p >= 0 && pattern[p] != x { p = ps[p] } p++ ps[i] = p } res := 0 M := len(nums) for i, p := 1, 0; i < M; i++ { t := nums[i] - nums[i-1] switch { case t > 0: t = 1 case t < 0: t = -1 } for p >= 0 && pattern[p] != t { p = ps[p] } if p++; p == N { res++ p = ps[p] } } return res }
-
class Solution { countMatchingSubarrays(nums: number[], pattern: number[]): number { for (let i = 0; i < nums.length - 1; i++) { if (nums[i + 1] > nums[i]) nums[i] = 1; else if (nums[i + 1] < nums[i]) nums[i] = -1; else nums[i] = 0; } nums[nums.length - 1] = 2; const n = nums.length; const m = pattern.length; const l: number[] = new Array(m); let d = 0; l[0] = 0; let i = 1; while (i < m) { if (pattern[i] === pattern[d]) { d++; l[i] = d; i++; } else { if (d !== 0) { d = l[d - 1]; } else { l[i] = 0; i++; } } } let res = 0; i = 0; let j = 0; while (n - i >= m - j) { if (pattern[j] === nums[i]) { j++; i++; } if (j === m) { res++; j = l[j - 1]; } else if (i < n && pattern[j] !== nums[i]) { if (j !== 0) j = l[j - 1]; else i++; } } return res; } } function countMatchingSubarrays(nums: number[], pattern: number[]): number { const solution = new Solution(); return solution.countMatchingSubarrays(nums, pattern); }