Welcome to Subscribe On Youtube

3017. Count the Number of Houses at a Certain Distance II

Description

You are given three positive integers n, x, and y.

In a city, there exist houses numbered 1 to n connected by n streets. There is a street connecting the house numbered i with the house numbered i + 1 for all 1 <= i <= n - 1 . An additional street connects the house numbered x with the house numbered y.

For each k, such that 1 <= k <= n, you need to find the number of pairs of houses (house1, house2) such that the minimum number of streets that need to be traveled to reach house2 from house1 is k.

Return a 1-indexed array result of length n where result[k] represents the total number of pairs of houses such that the minimum streets required to reach one house from the other is k.

Note that x and y can be equal.

 

Example 1:

Input: n = 3, x = 1, y = 3
Output: [6,0,0]
Explanation: Let's look at each pair of houses:
- For the pair (1, 2), we can go from house 1 to house 2 directly.
- For the pair (2, 1), we can go from house 2 to house 1 directly.
- For the pair (1, 3), we can go from house 1 to house 3 directly.
- For the pair (3, 1), we can go from house 3 to house 1 directly.
- For the pair (2, 3), we can go from house 2 to house 3 directly.
- For the pair (3, 2), we can go from house 3 to house 2 directly.

Example 2:

Input: n = 5, x = 2, y = 4
Output: [10,8,2,0,0]
Explanation: For each distance k the pairs are:
- For k == 1, the pairs are (1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5), and (5, 4).
- For k == 2, the pairs are (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2), (3, 5), and (5, 3).
- For k == 3, the pairs are (1, 5), and (5, 1).
- For k == 4 and k == 5, there are no pairs.

Example 3:

Input: n = 4, x = 1, y = 1
Output: [6,4,2,0]
Explanation: For each distance k the pairs are:
- For k == 1, the pairs are (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), and (4, 3).
- For k == 2, the pairs are (1, 3), (3, 1), (2, 4), and (4, 2).
- For k == 3, the pairs are (1, 4), and (4, 1).
- For k == 4, there are no pairs.

 

Constraints:

  • 2 <= n <= 105
  • 1 <= x, y <= n

Solutions

Solution 1

  • class Solution {
        public long[] countOfPairs(int n, int x, int y) {
            --x;
            --y;
            if (x > y) {
                int temp = x;
                x = y;
                y = temp;
            }
            long[] diff = new long[n];
            for (int i = 0; i < n; ++i) {
                diff[0] += 1 + 1;
                ++diff[Math.min(Math.abs(i - x), Math.abs(i - y) + 1)];
                ++diff[Math.min(Math.abs(i - y), Math.abs(i - x) + 1)];
                --diff[Math.min(Math.abs(i - 0), Math.abs(i - y) + 1 + Math.abs(x - 0))];
                --diff[Math.min(Math.abs(i - (n - 1)), Math.abs(i - x) + 1 + Math.abs(y - (n - 1)))];
                --diff[Math.max(x - i, 0) + Math.max(i - y, 0) + ((y - x) + 0) / 2];
                --diff[Math.max(x - i, 0) + Math.max(i - y, 0) + ((y - x) + 1) / 2];
            }
            for (int i = 0; i + 1 < n; ++i) {
                diff[i + 1] += diff[i];
            }
            return diff;
        }
    }
    
    
  • class Solution {
    public:
        vector<long long> countOfPairs(int n, int x, int y) {
            --x, --y;
            if (x > y) {
                swap(x, y);
            }
            vector<long long> diff(n);
            for (int i = 0; i < n; ++i) {
                diff[0] += 1 + 1;
                ++diff[min(abs(i - x), abs(i - y) + 1)];
                ++diff[min(abs(i - y), abs(i - x) + 1)];
                --diff[min(abs(i - 0), abs(i - y) + 1 + abs(x - 0))];
                --diff[min(abs(i - (n - 1)), abs(i - x) + 1 + abs(y - (n - 1)))];
                --diff[max(x - i, 0) + max(i - y, 0) + ((y - x) + 0) / 2];
                --diff[max(x - i, 0) + max(i - y, 0) + ((y - x) + 1) / 2];
            }
            for (int i = 0; i + 1 < n; ++i) {
                diff[i + 1] += diff[i];
            }
            return diff;
        }
    };
    
    
  • class Solution:
        def countOfPairs(self, n: int, x: int, y: int) -> List[int]:
            if abs(x - y) <= 1:
                return [2 * x for x in reversed(range(n))]
            cycle_len = abs(x - y) + 1
            n2 = n - cycle_len + 2
            res = [2 * x for x in reversed(range(n2))]
            while len(res) < n:
                res.append(0)
            res2 = [cycle_len * 2] * (cycle_len >> 1)
            if not cycle_len & 1:
                res2[-1] = cycle_len
            res2[0] -= 2
            for i in range(len(res2)):
                res[i] += res2[i]
            if x > y:
                x, y = y, x
            tail1 = x - 1
            tail2 = n - y
            for tail in (tail1, tail2):
                if not tail:
                    continue
                i_mx = tail + (cycle_len >> 1)
                val_mx = 4 * min((cycle_len - 3) >> 1, tail)
                i_mx2 = i_mx - (1 - (cycle_len & 1))
                res3 = [val_mx] * i_mx
                res3[0] = 0
                res3[1] = 0
                if not cycle_len & 1:
                    res3[-1] = 0
                for i, j in enumerate(range(4, val_mx, 4)):
                    res3[i + 2] = j
                    res3[i_mx2 - i - 1] = j
                for i in range(1, tail + 1):
                    res3[i] += 2
                if not cycle_len & 1:
                    mn = cycle_len >> 1
                    for i in range(mn, mn + tail):
                        res3[i] += 2
                for i in range(len(res3)):
                    res[i] += res3[i]
            return res
    
    
  • func countOfPairs(n int, x int, y int) []int64 {
    	if x > y {
    		x, y = y, x
    	}
    	A := make([]int64, n)
    	for i := 1; i <= n; i++ {
    		A[0] += 2
    		A[min(int64(i-1), int64(math.Abs(float64(i-y)))+int64(x))] -= 1
    		A[min(int64(n-i), int64(math.Abs(float64(i-x)))+1+int64(n-y))] -= 1
    		A[min(int64(math.Abs(float64(i-x))), int64(math.Abs(float64(y-i)))+1)] += 1
    		A[min(int64(math.Abs(float64(i-x)))+1, int64(math.Abs(float64(y-i))))] += 1
    		r := max(int64(x-i), 0) + max(int64(i-y), 0)
    		A[r+int64((y-x+0)/2)] -= 1
    		A[r+int64((y-x+1)/2)] -= 1
    	}
    	for i := 1; i < n; i++ {
    		A[i] += A[i-1]
    	}
    
    	return A
    }
    
    

All Problems

All Solutions