Welcome to Subscribe On Youtube
2983. Palindrome Rearrangement Queries
Description
You are given a 0-indexed string s
having an even length n
.
You are also given a 0-indexed 2D integer array, queries
, where queries[i] = [ai, bi, ci, di]
.
For each query i
, you are allowed to perform the following operations:
- Rearrange the characters within the substring
s[ai:bi]
, where0 <= ai <= bi < n / 2
. - Rearrange the characters within the substring
s[ci:di]
, wheren / 2 <= ci <= di < n
.
For each query, your task is to determine whether it is possible to make s
a palindrome by performing the operations.
Each query is answered independently of the others.
Return a 0-indexed array answer
, where answer[i] == true
if it is possible to make s
a palindrome by performing operations specified by the ith
query, and false
otherwise.
- A substring is a contiguous sequence of characters within a string.
s[x:y]
represents the substring consisting of characters from the indexx
to indexy
ins
, both inclusive.
Example 1:
Input: s = "abcabc", queries = [[1,1,3,5],[0,2,5,5]] Output: [true,true] Explanation: In this example, there are two queries: In the first query: - a0 = 1, b0 = 1, c0 = 3, d0 = 5. - So, you are allowed to rearrange s[1:1] => abcabc and s[3:5] => abcabc. - To make s a palindrome, s[3:5] can be rearranged to become => abccba. - Now, s is a palindrome. So, answer[0] = true. In the second query: - a1 = 0, b1 = 2, c1 = 5, d1 = 5. - So, you are allowed to rearrange s[0:2] => abcabc and s[5:5] => abcabc. - To make s a palindrome, s[0:2] can be rearranged to become => cbaabc. - Now, s is a palindrome. So, answer[1] = true.
Example 2:
Input: s = "abbcdecbba", queries = [[0,2,7,9]] Output: [false] Explanation: In this example, there is only one query. a0 = 0, b0 = 2, c0 = 7, d0 = 9. So, you are allowed to rearrange s[0:2] => abbcdecbba and s[7:9] => abbcdecbba. It is not possible to make s a palindrome by rearranging these substrings because s[3:6] is not a palindrome. So, answer[0] = false.
Example 3:
Input: s = "acbcab", queries = [[1,2,4,5]] Output: [true] Explanation: In this example, there is only one query. a0 = 1, b0 = 2, c0 = 4, d0 = 5. So, you are allowed to rearrange s[1:2] => acbcab and s[4:5] => acbcab. To make s a palindrome s[1:2] can be rearranged to become abccab. Then, s[4:5] can be rearranged to become abccba. Now, s is a palindrome. So, answer[0] = true.
Constraints:
2 <= n == s.length <= 105
1 <= queries.length <= 105
queries[i].length == 4
ai == queries[i][0], bi == queries[i][1]
ci == queries[i][2], di == queries[i][3]
0 <= ai <= bi < n / 2
n / 2 <= ci <= di < n
n
is even.s
consists of only lowercase English letters.
Solutions
Solution 1: Prefix Sum + Case Discussion
Let’s denote the length of string $s$ as $n$, then half of the length is $m = \frac{n}{2}$. Next, we divide string $s$ into two equal-length segments, where the second segment is reversed to get string $t$, and the first segment remains as $s$. For each query $[a_i, b_i, c_i, d_i]$, where $c_i$ and $d_i$ need to be transformed to $n - 1 - d_i$ and $n - 1 - c_i$. The problem is transformed into: for each query $[a_i, b_i, c_i, d_i]$, determine whether $s[a_i, b_i]$ and $t[c_i, d_i]$ can be rearranged to make strings $s$ and $t$ equal.
We preprocess the following information:
- The prefix sum array $pre_1$ of string $s$, where $pre_1[i][j]$ represents the quantity of character $j$ in the first $i$ characters of string $s$;
- The prefix sum array $pre_2$ of string $t$, where $pre_2[i][j]$ represents the quantity of character $j$ in the first $i$ characters of string $t$;
- The difference array $diff$ of strings $s$ and $t$, where $diff[i]$ represents the quantity of different characters in the first $i$ characters of strings $s$ and $t$.
For each query $[a_i, b_i, c_i, d_i]$, let’s assume $a_i \le c_i$, then we need to discuss the following cases:
- The prefix substrings $s[..a_i-1]$ and $t[..a_i-1]$ of strings $s$ and $t$ must be equal, and the suffix substrings $s[\max(b_i, d_i)+1..]$ and $t[\max(b_i, d_i)..]$ must also be equal, otherwise, it is impossible to rearrange to make strings $s$ and $t$ equal;
- If $d_i \le b_i$, it means the interval $[a_i, b_i]$ contains the interval $[c_i, d_i]$. If the substrings $s[a_i, b_i]$ and $t[a_i, b_i]$ contain the same quantity of characters, then it is possible to rearrange to make strings $s$ and $t$ equal, otherwise, it is impossible;
- If $b_i < c_i$, it means the intervals $[a_i, b_i]$ and $[c_i, d_i]$ do not intersect. Then the substrings $s[b_i+1, c_i-1]$ and $t[b_i+1, c_i-1]$ must be equal, and the substrings $s[a_i, b_i]$ and $t[a_i, b_i]$ must be equal, and the substrings $s[c_i, d_i]$ and $t[c_i, d_i]$ must be equal, otherwise, it is impossible to rearrange to make strings $s$ and $t$ equal.
- If $c_i \le b_i < d_i$, it means the intervals $[a_i, b_i]$ and $[c_i, d_i]$ intersect. Then the characters contained in $s[a_i, b_i]$, minus the characters contained in $t[a_i, c_i-1]$, must be equal to the characters contained in $t[c_i, d_i]$, minus the characters contained in $s[b_i+1, d_i]$, otherwise, it is impossible to rearrange to make strings $s$ and $t$ equal.
Based on the above analysis, we iterate through each query $[a_i, b_i, c_i, d_i]$, and determine whether it satisfies the above conditions.
The time complexity is $O((n + q) \times |\Sigma|)$, and the space complexity is $O(n \times |\Sigma|)$. Where $n$ and $q$ are the lengths of string $s$ and the query array $queries$ respectively; and $|\Sigma|$ is the size of the character set. In this problem, the character set is lowercase English letters, so $|\Sigma| = 26$.
-
class Solution { public boolean[] canMakePalindromeQueries(String s, int[][] queries) { int n = s.length(); int m = n / 2; String t = new StringBuilder(s.substring(m)).reverse().toString(); s = s.substring(0, m); int[][] pre1 = new int[m + 1][0]; int[][] pre2 = new int[m + 1][0]; int[] diff = new int[m + 1]; pre1[0] = new int[26]; pre2[0] = new int[26]; for (int i = 1; i <= m; ++i) { pre1[i] = pre1[i - 1].clone(); pre2[i] = pre2[i - 1].clone(); ++pre1[i][s.charAt(i - 1) - 'a']; ++pre2[i][t.charAt(i - 1) - 'a']; diff[i] = diff[i - 1] + (s.charAt(i - 1) == t.charAt(i - 1) ? 0 : 1); } boolean[] ans = new boolean[queries.length]; for (int i = 0; i < queries.length; ++i) { int[] q = queries[i]; int a = q[0], b = q[1]; int c = n - 1 - q[3], d = n - 1 - q[2]; ans[i] = a <= c ? check(pre1, pre2, diff, a, b, c, d) : check(pre2, pre1, diff, c, d, a, b); } return ans; } private boolean check(int[][] pre1, int[][] pre2, int[] diff, int a, int b, int c, int d) { if (diff[a] > 0 || diff[diff.length - 1] - diff[Math.max(b, d) + 1] > 0) { return false; } if (d <= b) { return Arrays.equals(count(pre1, a, b), count(pre2, a, b)); } if (b < c) { return diff[c] - diff[b + 1] == 0 && Arrays.equals(count(pre1, a, b), count(pre2, a, b)) && Arrays.equals(count(pre1, c, d), count(pre2, c, d)); } int[] cnt1 = sub(count(pre1, a, b), count(pre2, a, c - 1)); int[] cnt2 = sub(count(pre2, c, d), count(pre1, b + 1, d)); return cnt1 != null && cnt2 != null && Arrays.equals(cnt1, cnt2); } private int[] count(int[][] pre, int i, int j) { int[] cnt = new int[26]; for (int k = 0; k < 26; ++k) { cnt[k] = pre[j + 1][k] - pre[i][k]; } return cnt; } private int[] sub(int[] cnt1, int[] cnt2) { int[] cnt = new int[26]; for (int i = 0; i < 26; ++i) { cnt[i] = cnt1[i] - cnt2[i]; if (cnt[i] < 0) { return null; } } return cnt; } }
-
class Solution { public: vector<bool> canMakePalindromeQueries(string s, vector<vector<int>>& queries) { int n = s.length(); int m = n / 2; string t = string(s.begin() + m, s.end()); reverse(t.begin(), t.end()); s = string(s.begin(), s.begin() + m); vector<vector<int>> pre1(m + 1, vector<int>(26)); vector<vector<int>> pre2(m + 1, vector<int>(26)); vector<int> diff(m + 1, 0); for (int i = 1; i <= m; ++i) { pre1[i] = pre1[i - 1]; pre2[i] = pre2[i - 1]; ++pre1[i][s[i - 1] - 'a']; ++pre2[i][t[i - 1] - 'a']; diff[i] = diff[i - 1] + (s[i - 1] == t[i - 1] ? 0 : 1); } vector<bool> ans(queries.size(), false); for (int i = 0; i < queries.size(); ++i) { vector<int> q = queries[i]; int a = q[0], b = q[1]; int c = n - 1 - q[3], d = n - 1 - q[2]; ans[i] = (a <= c) ? check(pre1, pre2, diff, a, b, c, d) : check(pre2, pre1, diff, c, d, a, b); } return ans; } private: bool check(const vector<vector<int>>& pre1, const vector<vector<int>>& pre2, const vector<int>& diff, int a, int b, int c, int d) { if (diff[a] > 0 || diff[diff.size() - 1] - diff[max(b, d) + 1] > 0) { return false; } if (d <= b) { return count(pre1, a, b) == count(pre2, a, b); } if (b < c) { return diff[c] - diff[b + 1] == 0 && count(pre1, a, b) == count(pre2, a, b) && count(pre1, c, d) == count(pre2, c, d); } vector<int> cnt1 = sub(count(pre1, a, b), count(pre2, a, c - 1)); vector<int> cnt2 = sub(count(pre2, c, d), count(pre1, b + 1, d)); return cnt1 != vector<int>() && cnt2 != vector<int>() && cnt1 == cnt2; } vector<int> count(const vector<vector<int>>& pre, int i, int j) { vector<int> cnt(26); for (int k = 0; k < 26; ++k) { cnt[k] = pre[j + 1][k] - pre[i][k]; } return cnt; } vector<int> sub(const vector<int>& cnt1, const vector<int>& cnt2) { vector<int> cnt(26); for (int i = 0; i < 26; ++i) { cnt[i] = cnt1[i] - cnt2[i]; if (cnt[i] < 0) { return vector<int>(); } } return cnt; } };
-
class Solution: def canMakePalindromeQueries(self, s: str, queries: List[List[int]]) -> List[bool]: def count(pre: List[List[int]], i: int, j: int) -> List[int]: return [x - y for x, y in zip(pre[j + 1], pre[i])] def sub(cnt1: List[int], cnt2: List[int]) -> List[int]: res = [] for x, y in zip(cnt1, cnt2): if x - y < 0: return [] res.append(x - y) return res def check( pre1: List[List[int]], pre2: List[List[int]], a: int, b: int, c: int, d: int ) -> bool: if diff[a] > 0 or diff[m] - diff[max(b, d) + 1] > 0: return False if d <= b: return count(pre1, a, b) == count(pre2, a, b) if b < c: return ( diff[c] - diff[b + 1] == 0 and count(pre1, a, b) == count(pre2, a, b) and count(pre1, c, d) == count(pre2, c, d) ) cnt1 = sub(count(pre1, a, b), count(pre2, a, c - 1)) cnt2 = sub(count(pre2, c, d), count(pre1, b + 1, d)) return bool(cnt1) and bool(cnt2) and cnt1 == cnt2 n = len(s) m = n // 2 t = s[m:][::-1] s = s[:m] pre1 = [[0] * 26 for _ in range(m + 1)] pre2 = [[0] * 26 for _ in range(m + 1)] diff = [0] * (m + 1) for i, (c1, c2) in enumerate(zip(s, t), 1): pre1[i] = pre1[i - 1][:] pre2[i] = pre2[i - 1][:] pre1[i][ord(c1) - ord("a")] += 1 pre2[i][ord(c2) - ord("a")] += 1 diff[i] = diff[i - 1] + int(c1 != c2) ans = [] for a, b, c, d in queries: c, d = n - 1 - d, n - 1 - c ok = ( check(pre1, pre2, a, b, c, d) if a <= c else check(pre2, pre1, c, d, a, b) ) ans.append(ok) return ans
-
func canMakePalindromeQueries(s string, queries [][]int) (ans []bool) { n := len(s) m := n / 2 t := reverse(s[m:]) s = s[:m] pre1 := make([][]int, m+1) pre2 := make([][]int, m+1) diff := make([]int, m+1) pre1[0] = make([]int, 26) pre2[0] = make([]int, 26) for i := 1; i <= m; i++ { pre1[i] = slices.Clone(pre1[i-1]) pre2[i] = slices.Clone(pre2[i-1]) pre1[i][int(s[i-1]-'a')]++ pre2[i][int(t[i-1]-'a')]++ diff[i] = diff[i-1] if s[i-1] != t[i-1] { diff[i]++ } } for _, q := range queries { a, b := q[0], q[1] c, d := n-1-q[3], n-1-q[2] if a <= c { ans = append(ans, check(pre1, pre2, diff, a, b, c, d)) } else { ans = append(ans, check(pre2, pre1, diff, c, d, a, b)) } } return } func check(pre1, pre2 [][]int, diff []int, a, b, c, d int) bool { if diff[a] > 0 || diff[len(diff)-1]-diff[max(b, d)+1] > 0 { return false } if d <= b { return slices.Equal(count(pre1, a, b), count(pre2, a, b)) } if b < c { return diff[c]-diff[b+1] == 0 && slices.Equal(count(pre1, a, b), count(pre2, a, b)) && slices.Equal(count(pre1, c, d), count(pre2, c, d)) } cnt1 := sub(count(pre1, a, b), count(pre2, a, c-1)) cnt2 := sub(count(pre2, c, d), count(pre1, b+1, d)) return !slices.Equal(cnt1, []int{}) && !slices.Equal(cnt2, []int{}) && slices.Equal(cnt1, cnt2) } func count(pre [][]int, i, j int) []int { cnt := make([]int, 26) for k := 0; k < 26; k++ { cnt[k] = pre[j+1][k] - pre[i][k] } return cnt } func sub(cnt1, cnt2 []int) []int { cnt := make([]int, 26) for i := 0; i < 26; i++ { cnt[i] = cnt1[i] - cnt2[i] if cnt[i] < 0 { return []int{} } } return cnt } func reverse(s string) string { runes := []rune(s) for i, j := 0, len(runes)-1; i < j; i, j = i+1, j-1 { runes[i], runes[j] = runes[j], runes[i] } return string(runes) }
-
function canMakePalindromeQueries(s: string, queries: number[][]): boolean[] { const n: number = s.length; const m: number = n >> 1; const t: string = s.slice(m).split('').reverse().join(''); s = s.slice(0, m); const pre1: number[][] = Array.from({ length: m + 1 }, () => Array(26).fill(0)); const pre2: number[][] = Array.from({ length: m + 1 }, () => Array(26).fill(0)); const diff: number[] = Array(m + 1).fill(0); for (let i = 1; i <= m; ++i) { pre1[i] = [...pre1[i - 1]]; pre2[i] = [...pre2[i - 1]]; ++pre1[i][s.charCodeAt(i - 1) - 'a'.charCodeAt(0)]; ++pre2[i][t.charCodeAt(i - 1) - 'a'.charCodeAt(0)]; diff[i] = diff[i - 1] + (s[i - 1] === t[i - 1] ? 0 : 1); } const ans: boolean[] = Array(queries.length).fill(false); for (let i = 0; i < queries.length; ++i) { const q: number[] = queries[i]; const [a, b] = [q[0], q[1]]; const [c, d] = [n - 1 - q[3], n - 1 - q[2]]; ans[i] = a <= c ? check(pre1, pre2, diff, a, b, c, d) : check(pre2, pre1, diff, c, d, a, b); } return ans; } function check( pre1: number[][], pre2: number[][], diff: number[], a: number, b: number, c: number, d: number, ): boolean { if (diff[a] > 0 || diff[diff.length - 1] - diff[Math.max(b, d) + 1] > 0) { return false; } if (d <= b) { return arraysEqual(count(pre1, a, b), count(pre2, a, b)); } if (b < c) { return ( diff[c] - diff[b + 1] === 0 && arraysEqual(count(pre1, a, b), count(pre2, a, b)) && arraysEqual(count(pre1, c, d), count(pre2, c, d)) ); } const cnt1: number[] | null = sub(count(pre1, a, b), count(pre2, a, c - 1)); const cnt2: number[] | null = sub(count(pre2, c, d), count(pre1, b + 1, d)); return cnt1 !== null && cnt2 !== null && arraysEqual(cnt1, cnt2); } function count(pre: number[][], i: number, j: number): number[] { const cnt: number[] = new Array(26).fill(0); for (let k = 0; k < 26; ++k) { cnt[k] = pre[j + 1][k] - pre[i][k]; } return cnt; } function sub(cnt1: number[], cnt2: number[]): number[] | null { const cnt: number[] = new Array(26).fill(0); for (let i = 0; i < 26; ++i) { cnt[i] = cnt1[i] - cnt2[i]; if (cnt[i] < 0) { return null; } } return cnt; } function arraysEqual(arr1: number[], arr2: number[]): boolean { return JSON.stringify(arr1) === JSON.stringify(arr2); }