Welcome to Subscribe On Youtube

2974. Minimum Number Game

Description

You are given a 0-indexed integer array nums of even length and there is also an empty array arr. Alice and Bob decided to play a game where in every round Alice and Bob will do one move. The rules of the game are as follows:

  • Every round, first Alice will remove the minimum element from nums, and then Bob does the same.
  • Now, first Bob will append the removed element in the array arr, and then Alice does the same.
  • The game continues until nums becomes empty.

Return the resulting array arr.

 

Example 1:

Input: nums = [5,4,2,3]
Output: [3,2,5,4]
Explanation: In round one, first Alice removes 2 and then Bob removes 3. Then in arr firstly Bob appends 3 and then Alice appends 2. So arr = [3,2].
At the begining of round two, nums = [5,4]. Now, first Alice removes 4 and then Bob removes 5. Then both append in arr which becomes [3,2,5,4].

Example 2:

Input: nums = [2,5]
Output: [5,2]
Explanation: In round one, first Alice removes 2 and then Bob removes 5. Then in arr firstly Bob appends and then Alice appends. So arr = [5,2].

 

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100
  • nums.length % 2 == 0

Solutions

Solution 1: Simulation + Priority Queue (Min Heap)

We can put the elements in the array $nums$ into a min heap one by one, and each time take out two elements $a$ and $b$ from the min heap, then put $b$ and $a$ into the answer array in turn, until the min heap is empty.

Time complexity is $O(n \times \log n)$, and space complexity is $O(n)$. Where $n$ is the length of the array $nums$.

Solution 2: Sorting + Swapping

We can sort the array $nums$, and then swap the positions of every two adjacent elements in sequence to get the answer array.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array $nums$.

  • class Solution {
        public int[] numberGame(int[] nums) {
            PriorityQueue<Integer> pq = new PriorityQueue<>();
            for (int x : nums) {
                pq.offer(x);
            }
            int[] ans = new int[nums.length];
            int i = 0;
            while (!pq.isEmpty()) {
                int a = pq.poll();
                ans[i++] = pq.poll();
                ans[i++] = a;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        vector<int> numberGame(vector<int>& nums) {
            priority_queue<int, vector<int>, greater<int>> pq;
            for (int x : nums) {
                pq.push(x);
            }
            vector<int> ans;
            while (pq.size()) {
                int a = pq.top();
                pq.pop();
                int b = pq.top();
                pq.pop();
                ans.push_back(b);
                ans.push_back(a);
            }
            return ans;
        }
    };
    
  • class Solution:
        def numberGame(self, nums: List[int]) -> List[int]:
            heapify(nums)
            ans = []
            while nums:
                a, b = heappop(nums), heappop(nums)
                ans.append(b)
                ans.append(a)
            return ans
    
    
  • func numberGame(nums []int) (ans []int) {
    	pq := &hp{nums}
    	heap.Init(pq)
    	for pq.Len() > 0 {
    		a := heap.Pop(pq).(int)
    		b := heap.Pop(pq).(int)
    		ans = append(ans, b)
    		ans = append(ans, a)
    	}
    	return
    }
    
    type hp struct{ sort.IntSlice }
    
    func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
    func (h *hp) Pop() interface{} {
    	old := h.IntSlice
    	n := len(old)
    	x := old[n-1]
    	h.IntSlice = old[0 : n-1]
    	return x
    }
    func (h *hp) Push(x interface{}) {
    	h.IntSlice = append(h.IntSlice, x.(int))
    }
    
  • function numberGame(nums: number[]): number[] {
        const pq = new MinPriorityQueue();
        for (const x of nums) {
            pq.enqueue(x);
        }
        const ans: number[] = [];
        while (pq.size()) {
            const a = pq.dequeue().element;
            const b = pq.dequeue().element;
            ans.push(b, a);
        }
        return ans;
    }
    
    
  • use std::collections::BinaryHeap;
    use std::cmp::Reverse;
    
    impl Solution {
        pub fn number_game(nums: Vec<i32>) -> Vec<i32> {
            let mut pq = BinaryHeap::new();
    
            for &x in &nums {
                pq.push(Reverse(x));
            }
    
            let mut ans = Vec::new();
    
            while let Some(Reverse(a)) = pq.pop() {
                if let Some(Reverse(b)) = pq.pop() {
                    ans.push(b);
                    ans.push(a);
                }
            }
    
            ans
        }
    }
    
    

All Problems

All Solutions