Welcome to Subscribe On Youtube
2974. Minimum Number Game
Description
You are given a 0-indexed integer array nums
of even length and there is also an empty array arr
. Alice and Bob decided to play a game where in every round Alice and Bob will do one move. The rules of the game are as follows:
- Every round, first Alice will remove the minimum element from
nums
, and then Bob does the same. - Now, first Bob will append the removed element in the array
arr
, and then Alice does the same. - The game continues until
nums
becomes empty.
Return the resulting array arr
.
Example 1:
Input: nums = [5,4,2,3] Output: [3,2,5,4] Explanation: In round one, first Alice removes 2 and then Bob removes 3. Then in arr firstly Bob appends 3 and then Alice appends 2. So arr = [3,2]. At the begining of round two, nums = [5,4]. Now, first Alice removes 4 and then Bob removes 5. Then both append in arr which becomes [3,2,5,4].
Example 2:
Input: nums = [2,5] Output: [5,2] Explanation: In round one, first Alice removes 2 and then Bob removes 5. Then in arr firstly Bob appends and then Alice appends. So arr = [5,2].
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
nums.length % 2 == 0
Solutions
Solution 1: Simulation + Priority Queue (Min Heap)
We can put the elements in the array $nums$ into a min heap one by one, and each time take out two elements $a$ and $b$ from the min heap, then put $b$ and $a$ into the answer array in turn, until the min heap is empty.
Time complexity is $O(n \times \log n)$, and space complexity is $O(n)$. Where $n$ is the length of the array $nums$.
Solution 2: Sorting + Swapping
We can sort the array $nums$, and then swap the positions of every two adjacent elements in sequence to get the answer array.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array $nums$.
-
class Solution { public int[] numberGame(int[] nums) { PriorityQueue<Integer> pq = new PriorityQueue<>(); for (int x : nums) { pq.offer(x); } int[] ans = new int[nums.length]; int i = 0; while (!pq.isEmpty()) { int a = pq.poll(); ans[i++] = pq.poll(); ans[i++] = a; } return ans; } }
-
class Solution { public: vector<int> numberGame(vector<int>& nums) { priority_queue<int, vector<int>, greater<int>> pq; for (int x : nums) { pq.push(x); } vector<int> ans; while (pq.size()) { int a = pq.top(); pq.pop(); int b = pq.top(); pq.pop(); ans.push_back(b); ans.push_back(a); } return ans; } };
-
class Solution: def numberGame(self, nums: List[int]) -> List[int]: heapify(nums) ans = [] while nums: a, b = heappop(nums), heappop(nums) ans.append(b) ans.append(a) return ans
-
func numberGame(nums []int) (ans []int) { pq := &hp{nums} heap.Init(pq) for pq.Len() > 0 { a := heap.Pop(pq).(int) b := heap.Pop(pq).(int) ans = append(ans, b) ans = append(ans, a) } return } type hp struct{ sort.IntSlice } func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] } func (h *hp) Pop() interface{} { old := h.IntSlice n := len(old) x := old[n-1] h.IntSlice = old[0 : n-1] return x } func (h *hp) Push(x interface{}) { h.IntSlice = append(h.IntSlice, x.(int)) }
-
function numberGame(nums: number[]): number[] { const pq = new MinPriorityQueue(); for (const x of nums) { pq.enqueue(x); } const ans: number[] = []; while (pq.size()) { const a = pq.dequeue().element; const b = pq.dequeue().element; ans.push(b, a); } return ans; }
-
use std::collections::BinaryHeap; use std::cmp::Reverse; impl Solution { pub fn number_game(nums: Vec<i32>) -> Vec<i32> { let mut pq = BinaryHeap::new(); for &x in &nums { pq.push(Reverse(x)); } let mut ans = Vec::new(); while let Some(Reverse(a)) = pq.pop() { if let Some(Reverse(b)) = pq.pop() { ans.push(b); ans.push(a); } } ans } }