Welcome to Subscribe On Youtube
2971. Find Polygon With the Largest Perimeter
Description
You are given an array of positive integers nums
of length n
.
A polygon is a closed plane figure that has at least 3
sides. The longest side of a polygon is smaller than the sum of its other sides.
Conversely, if you have k
(k >= 3
) positive real numbers a1
, a2
, a3
, ..., ak
where a1 <= a2 <= a3 <= ... <= ak
and a1 + a2 + a3 + ... + ak-1 > ak
, then there always exists a polygon with k
sides whose lengths are a1
, a2
, a3
, ..., ak
.
The perimeter of a polygon is the sum of lengths of its sides.
Return the largest possible perimeter of a polygon whose sides can be formed from nums
, or -1
if it is not possible to create a polygon.
Example 1:
Input: nums = [5,5,5] Output: 15 Explanation: The only possible polygon that can be made from nums has 3 sides: 5, 5, and 5. The perimeter is 5 + 5 + 5 = 15.
Example 2:
Input: nums = [1,12,1,2,5,50,3] Output: 12 Explanation: The polygon with the largest perimeter which can be made from nums has 5 sides: 1, 1, 2, 3, and 5. The perimeter is 1 + 1 + 2 + 3 + 5 = 12. We cannot have a polygon with either 12 or 50 as the longest side because it is not possible to include 2 or more smaller sides that have a greater sum than either of them. It can be shown that the largest possible perimeter is 12.
Example 3:
Input: nums = [5,5,50] Output: -1 Explanation: There is no possible way to form a polygon from nums, as a polygon has at least 3 sides and 50 > 5 + 5.
Constraints:
3 <= n <= 105
1 <= nums[i] <= 109
Solutions
-
class Solution { public long largestPerimeter(int[] nums) { Arrays.sort(nums); int n = nums.length; long[] s = new long[n + 1]; for (int i = 1; i <= n; ++i) { s[i] = s[i - 1] + nums[i - 1]; } long ans = -1; for (int k = 3; k <= n; ++k) { if (s[k - 1] > nums[k - 1]) { ans = Math.max(ans, s[k]); } } return ans; } }
-
class Solution { public: long long largestPerimeter(vector<int>& nums) { sort(nums.begin(), nums.end()); int n = nums.size(); vector<long long> s(n + 1); for (int i = 1; i <= n; ++i) { s[i] = s[i - 1] + nums[i - 1]; } long long ans = -1; for (int k = 3; k <= n; ++k) { if (s[k - 1] > nums[k - 1]) { ans = max(ans, s[k]); } } return ans; } };
-
class Solution: def largestPerimeter(self, nums: List[int]) -> int: nums.sort() s = list(accumulate(nums, initial=0)) ans = -1 for k in range(3, len(nums) + 1): if s[k - 1] > nums[k - 1]: ans = max(ans, s[k]) return ans
-
func largestPerimeter(nums []int) int64 { sort.Ints(nums) n := len(nums) s := make([]int, n+1) for i, x := range nums { s[i+1] = s[i] + x } ans := -1 for k := 3; k <= n; k++ { if s[k-1] > nums[k-1] { ans = max(ans, s[k]) } } return int64(ans) }
-
function largestPerimeter(nums: number[]): number { nums.sort((a, b) => a - b); const n = nums.length; const s: number[] = Array(n + 1).fill(0); for (let i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } let ans = -1; for (let k = 3; k <= n; ++k) { if (s[k - 1] > nums[k - 1]) { ans = Math.max(ans, s[k]); } } return ans; }