Welcome to Subscribe On Youtube

2940. Find Building Where Alice and Bob Can Meet

Description

You are given a 0-indexed array heights of positive integers, where heights[i] represents the height of the ith building.

If a person is in building i, they can move to any other building j if and only if i < j and heights[i] < heights[j].

You are also given another array queries where queries[i] = [ai, bi]. On the ith query, Alice is in building ai while Bob is in building bi.

Return an array ans where ans[i] is the index of the leftmost building where Alice and Bob can meet on the ith query. If Alice and Bob cannot move to a common building on query i, set ans[i] to -1.

 

Example 1:

Input: heights = [6,4,8,5,2,7], queries = [[0,1],[0,3],[2,4],[3,4],[2,2]]
Output: [2,5,-1,5,2]
Explanation: In the first query, Alice and Bob can move to building 2 since heights[0] < heights[2] and heights[1] < heights[2]. 
In the second query, Alice and Bob can move to building 5 since heights[0] < heights[5] and heights[3] < heights[5]. 
In the third query, Alice cannot meet Bob since Alice cannot move to any other building.
In the fourth query, Alice and Bob can move to building 5 since heights[3] < heights[5] and heights[4] < heights[5].
In the fifth query, Alice and Bob are already in the same building.  
For ans[i] != -1, It can be shown that ans[i] is the leftmost building where Alice and Bob can meet.
For ans[i] == -1, It can be shown that there is no building where Alice and Bob can meet.

Example 2:

Input: heights = [5,3,8,2,6,1,4,6], queries = [[0,7],[3,5],[5,2],[3,0],[1,6]]
Output: [7,6,-1,4,6]
Explanation: In the first query, Alice can directly move to Bob's building since heights[0] < heights[7].
In the second query, Alice and Bob can move to building 6 since heights[3] < heights[6] and heights[5] < heights[6].
In the third query, Alice cannot meet Bob since Bob cannot move to any other building.
In the fourth query, Alice and Bob can move to building 4 since heights[3] < heights[4] and heights[0] < heights[4].
In the fifth query, Alice can directly move to Bob's building since heights[1] < heights[6].
For ans[i] != -1, It can be shown that ans[i] is the leftmost building where Alice and Bob can meet.
For ans[i] == -1, It can be shown that there is no building where Alice and Bob can meet.

 

Constraints:

  • 1 <= heights.length <= 5 * 104
  • 1 <= heights[i] <= 109
  • 1 <= queries.length <= 5 * 104
  • queries[i] = [ai, bi]
  • 0 <= ai, bi <= heights.length - 1

Solutions

Solution 1: Binary Indexed Tree

Let’s denote $queries[i] = [l_i, r_i]$, where $l_i \le r_i$. If $l_i = r_i$ or $heights[l_i] < heights[r_i]$, then the answer is $r_i$. Otherwise, we need to find the smallest $j$ among all $j > r_i$ and $heights[j] > heights[l_i]$.

We can sort $queries$ in descending order of $r_i$, and use a pointer $j$ to point to the current index of $heights$ being traversed.

Next, we traverse each query $queries[i] = (l, r)$. For the current query, if $j > r$, then we loop to insert $heights[j]$ into the binary indexed tree. The binary indexed tree maintains the minimum index of the suffix height (after discretization). Then, we judge whether $l = r$ or $heights[l] < heights[r]$. If it is, then the answer to the current query is $r$. Otherwise, we query the minimum index of $heights[l]$ in the binary indexed tree, which is the answer to the current query.

The time complexity is $O((n + m) \times \log n + m \times \log m)$, and the space complexity is $O(n + m)$. Where $n$ and $m$ are the lengths of $heights$ and $queries$ respectively.

  • class BinaryIndexedTree {
        private final int inf = 1 << 30;
        private int n;
        private int[] c;
    
        public BinaryIndexedTree(int n) {
            this.n = n;
            c = new int[n + 1];
            Arrays.fill(c, inf);
        }
    
        public void update(int x, int v) {
            while (x <= n) {
                c[x] = Math.min(c[x], v);
                x += x & -x;
            }
        }
    
        public int query(int x) {
            int mi = inf;
            while (x > 0) {
                mi = Math.min(mi, c[x]);
                x -= x & -x;
            }
            return mi == inf ? -1 : mi;
        }
    }
    
    class Solution {
        public int[] leftmostBuildingQueries(int[] heights, int[][] queries) {
            int n = heights.length;
            int m = queries.length;
            for (int i = 0; i < m; ++i) {
                if (queries[i][0] > queries[i][1]) {
                    queries[i] = new int[] {queries[i][1], queries[i][0]};
                }
            }
            Integer[] idx = new Integer[m];
            for (int i = 0; i < m; ++i) {
                idx[i] = i;
            }
            Arrays.sort(idx, (i, j) -> queries[j][1] - queries[i][1]);
            int[] s = heights.clone();
            Arrays.sort(s);
            int[] ans = new int[m];
            int j = n - 1;
            BinaryIndexedTree tree = new BinaryIndexedTree(n);
            for (int i : idx) {
                int l = queries[i][0], r = queries[i][1];
                while (j > r) {
                    int k = n - Arrays.binarySearch(s, heights[j]) + 1;
                    tree.update(k, j);
                    --j;
                }
                if (l == r || heights[l] < heights[r]) {
                    ans[i] = r;
                } else {
                    int k = n - Arrays.binarySearch(s, heights[l]);
                    ans[i] = tree.query(k);
                }
            }
            return ans;
        }
    }
    
  • class BinaryIndexedTree {
    private:
        int inf = 1 << 30;
        int n;
        vector<int> c;
    
    public:
        BinaryIndexedTree(int n) {
            this->n = n;
            c.resize(n + 1, inf);
        }
    
        void update(int x, int v) {
            while (x <= n) {
                c[x] = min(c[x], v);
                x += x & -x;
            }
        }
    
        int query(int x) {
            int mi = inf;
            while (x > 0) {
                mi = min(mi, c[x]);
                x -= x & -x;
            }
            return mi == inf ? -1 : mi;
        }
    };
    
    class Solution {
    public:
        vector<int> leftmostBuildingQueries(vector<int>& heights, vector<vector<int>>& queries) {
            int n = heights.size(), m = queries.size();
            for (auto& q : queries) {
                if (q[0] > q[1]) {
                    swap(q[0], q[1]);
                }
            }
            vector<int> idx(m);
            iota(idx.begin(), idx.end(), 0);
            sort(idx.begin(), idx.end(), [&](int i, int j) {
                return queries[j][1] < queries[i][1];
            });
            vector<int> s = heights;
            sort(s.begin(), s.end());
            s.erase(unique(s.begin(), s.end()), s.end());
            vector<int> ans(m);
            int j = n - 1;
            BinaryIndexedTree tree(n);
            for (int i : idx) {
                int l = queries[i][0], r = queries[i][1];
                while (j > r) {
                    int k = s.end() - lower_bound(s.begin(), s.end(), heights[j]) + 1;
                    tree.update(k, j);
                    --j;
                }
                if (l == r || heights[l] < heights[r]) {
                    ans[i] = r;
                } else {
                    int k = s.end() - lower_bound(s.begin(), s.end(), heights[l]);
                    ans[i] = tree.query(k);
                }
            }
            return ans;
        }
    };
    
  • class BinaryIndexedTree:
        __slots__ = ["n", "c"]
    
        def __init__(self, n: int):
            self.n = n
            self.c = [inf] * (n + 1)
    
        def update(self, x: int, v: int):
            while x <= self.n:
                self.c[x] = min(self.c[x], v)
                x += x & -x
    
        def query(self, x: int) -> int:
            mi = inf
            while x:
                mi = min(mi, self.c[x])
                x -= x & -x
            return -1 if mi == inf else mi
    
    
    class Solution:
        def leftmostBuildingQueries(
            self, heights: List[int], queries: List[List[int]]
        ) -> List[int]:
            n, m = len(heights), len(queries)
            for i in range(m):
                queries[i] = [min(queries[i]), max(queries[i])]
            j = n - 1
            s = sorted(set(heights))
            ans = [-1] * m
            tree = BinaryIndexedTree(n)
            for i in sorted(range(m), key=lambda i: -queries[i][1]):
                l, r = queries[i]
                while j > r:
                    k = n - bisect_left(s, heights[j]) + 1
                    tree.update(k, j)
                    j -= 1
                if l == r or heights[l] < heights[r]:
                    ans[i] = r
                else:
                    k = n - bisect_left(s, heights[l])
                    ans[i] = tree.query(k)
            return ans
    
    
  • const inf int = 1 << 30
    
    type BinaryIndexedTree struct {
    	n int
    	c []int
    }
    
    func NewBinaryIndexedTree(n int) BinaryIndexedTree {
    	c := make([]int, n+1)
    	for i := range c {
    		c[i] = inf
    	}
    	return BinaryIndexedTree{n: n, c: c}
    }
    
    func (bit *BinaryIndexedTree) update(x, v int) {
    	for x <= bit.n {
    		bit.c[x] = min(bit.c[x], v)
    		x += x & -x
    	}
    }
    
    func (bit *BinaryIndexedTree) query(x int) int {
    	mi := inf
    	for x > 0 {
    		mi = min(mi, bit.c[x])
    		x -= x & -x
    	}
    	if mi == inf {
    		return -1
    	}
    	return mi
    }
    
    func leftmostBuildingQueries(heights []int, queries [][]int) []int {
    	n, m := len(heights), len(queries)
    	for _, q := range queries {
    		if q[0] > q[1] {
    			q[0], q[1] = q[1], q[0]
    		}
    	}
    	idx := make([]int, m)
    	for i := range idx {
    		idx[i] = i
    	}
    	sort.Slice(idx, func(i, j int) bool { return queries[idx[j]][1] < queries[idx[i]][1] })
    	s := make([]int, n)
    	copy(s, heights)
    	sort.Ints(s)
    	ans := make([]int, m)
    	tree := NewBinaryIndexedTree(n)
    	j := n - 1
    	for _, i := range idx {
    		l, r := queries[i][0], queries[i][1]
    		for ; j > r; j-- {
    			k := n - sort.SearchInts(s, heights[j]) + 1
    			tree.update(k, j)
    		}
    		if l == r || heights[l] < heights[r] {
    			ans[i] = r
    		} else {
    			k := n - sort.SearchInts(s, heights[l])
    			ans[i] = tree.query(k)
    		}
    	}
    	return ans
    }
    
  • class BinaryIndexedTree {
        private n: number;
        private c: number[];
        private inf: number = 1 << 30;
    
        constructor(n: number) {
            this.n = n;
            this.c = Array(n + 1).fill(this.inf);
        }
    
        update(x: number, v: number): void {
            while (x <= this.n) {
                this.c[x] = Math.min(this.c[x], v);
                x += x & -x;
            }
        }
    
        query(x: number): number {
            let mi = this.inf;
            while (x > 0) {
                mi = Math.min(mi, this.c[x]);
                x -= x & -x;
            }
            return mi === this.inf ? -1 : mi;
        }
    }
    
    function leftmostBuildingQueries(heights: number[], queries: number[][]): number[] {
        const n = heights.length;
        const m = queries.length;
        for (const q of queries) {
            if (q[0] > q[1]) {
                [q[0], q[1]] = [q[1], q[0]];
            }
        }
        const idx: number[] = Array(m)
            .fill(0)
            .map((_, i) => i);
        idx.sort((i, j) => queries[j][1] - queries[i][1]);
        const tree = new BinaryIndexedTree(n);
        const ans: number[] = Array(m).fill(-1);
        const s = [...heights];
        s.sort((a, b) => a - b);
        const search = (x: number) => {
            let [l, r] = [0, n];
            while (l < r) {
                const mid = (l + r) >> 1;
                if (s[mid] >= x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        };
        let j = n - 1;
        for (const i of idx) {
            const [l, r] = queries[i];
            while (j > r) {
                const k = n - search(heights[j]) + 1;
                tree.update(k, j);
                --j;
            }
            if (l === r || heights[l] < heights[r]) {
                ans[i] = r;
            } else {
                const k = n - search(heights[l]);
                ans[i] = tree.query(k);
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions