Welcome to Subscribe On Youtube
2927. Distribute Candies Among Children III
Description
You are given two positive integers n
and limit
.
Return the total number of ways to distribute n
candies among 3
children such that no child gets more than limit
candies.
Example 1:
Input: n = 5, limit = 2 Output: 3 Explanation: There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
Example 2:
Input: n = 3, limit = 3 Output: 10 Explanation: There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
Constraints:
1 <= n <= 108
1 <= limit <= 108
Solutions
Solution 1: Combinatorial Mathematics + Principle of Inclusion-Exclusion
According to the problem description, we need to distribute $n$ candies to $3$ children, with each child receiving between $[0, limit]$ candies.
This is equivalent to placing $n$ balls into $3$ boxes. Since the boxes can be empty, we can add $3$ virtual balls, and then use the method of inserting partitions, i.e., there are a total of $n + 3$ balls, and we insert $2$ partitions among the $n + 3 - 1$ positions, thus dividing the actual $n$ balls into $3$ groups, and allowing the boxes to be empty. Therefore, the initial number of schemes is $C_{n + 2}^2$.
We need to exclude the schemes where the number of balls in a box exceeds $limit$. Consider that there is a box where the number of balls exceeds $limit$, then the remaining balls (including virtual balls) have at most $n + 3 - (limit + 1) = n - limit + 2$, and the number of positions is $n - limit + 1$, so the number of schemes is $C_{n - limit + 1}^2$. Since there are $3$ boxes, the number of such schemes is $3 \times C_{n - limit + 1}^2$. In this way, we will exclude too many schemes where the number of balls in two boxes exceeds $limit$ at the same time, so we need to add the number of such schemes, i.e., $3 \times C_{n - 2 \times limit}^2$.
The time complexity is $O(1)$, and the space complexity is $O(1)$.
-
class Solution { public long distributeCandies(int n, int limit) { if (n > 3 * limit) { return 0; } long ans = comb2(n + 2); if (n > limit) { ans -= 3 * comb2(n - limit + 1); } if (n - 2 >= 2 * limit) { ans += 3 * comb2(n - 2 * limit); } return ans; } private long comb2(int n) { return 1L * n * (n - 1) / 2; } }
-
class Solution { public: long long distributeCandies(int n, int limit) { auto comb2 = [](int n) { return 1LL * n * (n - 1) / 2; }; if (n > 3 * limit) { return 0; } long long ans = comb2(n + 2); if (n > limit) { ans -= 3 * comb2(n - limit + 1); } if (n - 2 >= 2 * limit) { ans += 3 * comb2(n - 2 * limit); } return ans; } };
-
class Solution: def distributeCandies(self, n: int, limit: int) -> int: if n > 3 * limit: return 0 ans = comb(n + 2, 2) if n > limit: ans -= 3 * comb(n - limit + 1, 2) if n - 2 >= 2 * limit: ans += 3 * comb(n - 2 * limit, 2) return ans
-
func distributeCandies(n int, limit int) int64 { comb2 := func(n int) int { return n * (n - 1) / 2 } if n > 3*limit { return 0 } ans := comb2(n + 2) if n > limit { ans -= 3 * comb2(n-limit+1) } if n-2 >= 2*limit { ans += 3 * comb2(n-2*limit) } return int64(ans) }
-
function distributeCandies(n: number, limit: number): number { const comb2 = (n: number) => (n * (n - 1)) / 2; if (n > 3 * limit) { return 0; } let ans = comb2(n + 2); if (n > limit) { ans -= 3 * comb2(n - limit + 1); } if (n - 2 >= 2 * limit) { ans += 3 * comb2(n - 2 * limit); } return ans; }