Welcome to Subscribe On Youtube

2926. Maximum Balanced Subsequence Sum

Description

You are given a 0-indexed integer array nums.

A subsequence of nums having length k and consisting of indices i0 < i1 < ... < ik-1 is balanced if the following holds:

  • nums[ij] - nums[ij-1] >= ij - ij-1, for every j in the range [1, k - 1].

A subsequence of nums having length 1 is considered balanced.

Return an integer denoting the maximum possible sum of elements in a balanced subsequence of nums.

A subsequence of an array is a new non-empty array that is formed from the original array by deleting some (possibly none) of the elements without disturbing the relative positions of the remaining elements.

 

Example 1:

Input: nums = [3,3,5,6]
Output: 14
Explanation: In this example, the subsequence [3,5,6] consisting of indices 0, 2, and 3 can be selected.
nums[2] - nums[0] >= 2 - 0.
nums[3] - nums[2] >= 3 - 2.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
The subsequence consisting of indices 1, 2, and 3 is also valid.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 14.

Example 2:

Input: nums = [5,-1,-3,8]
Output: 13
Explanation: In this example, the subsequence [5,8] consisting of indices 0 and 3 can be selected.
nums[3] - nums[0] >= 3 - 0.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 13.

Example 3:

Input: nums = [-2,-1]
Output: -1
Explanation: In this example, the subsequence [-1] can be selected.
It is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.

 

Constraints:

  • 1 <= nums.length <= 105
  • -109 <= nums[i] <= 109

Solutions

Solution 1: Dynamic Programming + Binary Indexed Tree

According to the problem description, we can transform the inequality $nums[i] - nums[j] \ge i - j$ into $nums[i] - i \ge nums[j] - j$. Therefore, we consider defining a new array $arr$, where $arr[i] = nums[i] - i$. A balanced subsequence satisfies that for any $j < i$, $arr[j] \le arr[i]$. The problem is transformed into selecting an increasing subsequence in $arr$ such that the corresponding sum in $nums$ is maximized.

Suppose $i$ is the index of the last element in the subsequence, then we consider the index $j$ of the second to last element in the subsequence. If $arr[j] \le arr[i]$, we can consider whether to add $j$ to the subsequence.

Therefore, we define $f[i]$ as the maximum sum of $nums$ when the index of the last element in the subsequence is $i$. The answer is $\max_{i=0}^{n-1} f[i]$.

The state transition equation is:

\[f[i] = \max(\max_{j=0}^{i-1} f[j], 0) + nums[i]\]

where $j$ satisfies $arr[j] \le arr[i]$.

We can use a Binary Indexed Tree to maintain the maximum value of the prefix, i.e., for each $arr[i]$, we maintain the maximum value of $f[i]$ in the prefix $arr[0..i]$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

  • class BinaryIndexedTree {
        private int n;
        private long[] c;
        private final long inf = 1L << 60;
    
        public BinaryIndexedTree(int n) {
            this.n = n;
            c = new long[n + 1];
            Arrays.fill(c, -inf);
        }
    
        public void update(int x, long v) {
            while (x <= n) {
                c[x] = Math.max(c[x], v);
                x += x & -x;
            }
        }
    
        public long query(int x) {
            long mx = -inf;
            while (x > 0) {
                mx = Math.max(mx, c[x]);
                x -= x & -x;
            }
            return mx;
        }
    }
    
    class Solution {
        public long maxBalancedSubsequenceSum(int[] nums) {
            int n = nums.length;
            int[] arr = new int[n];
            for (int i = 0; i < n; ++i) {
                arr[i] = nums[i] - i;
            }
            Arrays.sort(arr);
            int m = 0;
            for (int i = 0; i < n; ++i) {
                if (i == 0 || arr[i] != arr[i - 1]) {
                    arr[m++] = arr[i];
                }
            }
            BinaryIndexedTree tree = new BinaryIndexedTree(m);
            for (int i = 0; i < n; ++i) {
                int j = search(arr, nums[i] - i, m) + 1;
                long v = Math.max(tree.query(j), 0) + nums[i];
                tree.update(j, v);
            }
            return tree.query(m);
        }
    
        private int search(int[] nums, int x, int r) {
            int l = 0;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (nums[mid] >= x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    }
    
  • class BinaryIndexedTree {
    private:
        int n;
        vector<long long> c;
        const long long inf = 1e18;
    
    public:
        BinaryIndexedTree(int n) {
            this->n = n;
            c.resize(n + 1, -inf);
        }
    
        void update(int x, long long v) {
            while (x <= n) {
                c[x] = max(c[x], v);
                x += x & -x;
            }
        }
    
        long long query(int x) {
            long long mx = -inf;
            while (x > 0) {
                mx = max(mx, c[x]);
                x -= x & -x;
            }
            return mx;
        }
    };
    
    class Solution {
    public:
        long long maxBalancedSubsequenceSum(vector<int>& nums) {
            int n = nums.size();
            vector<int> arr(n);
            for (int i = 0; i < n; ++i) {
                arr[i] = nums[i] - i;
            }
            sort(arr.begin(), arr.end());
            arr.erase(unique(arr.begin(), arr.end()), arr.end());
            int m = arr.size();
            BinaryIndexedTree tree(m);
            for (int i = 0; i < n; ++i) {
                int j = lower_bound(arr.begin(), arr.end(), nums[i] - i) - arr.begin() + 1;
                long long v = max(tree.query(j), 0LL) + nums[i];
                tree.update(j, v);
            }
            return tree.query(m);
        }
    };
    
  • class BinaryIndexedTree:
        def __init__(self, n: int):
            self.n = n
            self.c = [-inf] * (n + 1)
    
        def update(self, x: int, v: int):
            while x <= self.n:
                self.c[x] = max(self.c[x], v)
                x += x & -x
    
        def query(self, x: int) -> int:
            mx = -inf
            while x:
                mx = max(mx, self.c[x])
                x -= x & -x
            return mx
    
    
    class Solution:
        def maxBalancedSubsequenceSum(self, nums: List[int]) -> int:
            arr = [x - i for i, x in enumerate(nums)]
            s = sorted(set(arr))
            tree = BinaryIndexedTree(len(s))
            for i, x in enumerate(nums):
                j = bisect_left(s, x - i) + 1
                v = max(tree.query(j), 0) + x
                tree.update(j, v)
            return tree.query(len(s))
    
    
  • const inf int = 1e18
    
    type BinaryIndexedTree struct {
    	n int
    	c []int
    }
    
    func NewBinaryIndexedTree(n int) BinaryIndexedTree {
    	c := make([]int, n+1)
    	for i := range c {
    		c[i] = -inf
    	}
    	return BinaryIndexedTree{n: n, c: c}
    }
    
    func (bit *BinaryIndexedTree) update(x, v int) {
    	for x <= bit.n {
    		bit.c[x] = max(bit.c[x], v)
    		x += x & -x
    	}
    }
    
    func (bit *BinaryIndexedTree) query(x int) int {
    	mx := -inf
    	for x > 0 {
    		mx = max(mx, bit.c[x])
    		x -= x & -x
    	}
    	return mx
    }
    
    func maxBalancedSubsequenceSum(nums []int) int64 {
    	n := len(nums)
    	arr := make([]int, n)
    	for i, x := range nums {
    		arr[i] = x - i
    	}
    	sort.Ints(arr)
    	m := 0
    	for i, x := range arr {
    		if i == 0 || x != arr[i-1] {
    			arr[m] = x
    			m++
    		}
    	}
    	arr = arr[:m]
    	tree := NewBinaryIndexedTree(m)
    	for i, x := range nums {
    		j := sort.SearchInts(arr, x-i) + 1
    		v := max(tree.query(j), 0) + x
    		tree.update(j, v)
    	}
    	return int64(tree.query(m))
    }
    
  • class BinaryIndexedTree {
        private n: number;
        private c: number[];
    
        constructor(n: number) {
            this.n = n;
            this.c = Array(n + 1).fill(-Infinity);
        }
    
        update(x: number, v: number): void {
            while (x <= this.n) {
                this.c[x] = Math.max(this.c[x], v);
                x += x & -x;
            }
        }
    
        query(x: number): number {
            let mx = -Infinity;
            while (x > 0) {
                mx = Math.max(mx, this.c[x]);
                x -= x & -x;
            }
            return mx;
        }
    }
    
    function maxBalancedSubsequenceSum(nums: number[]): number {
        const n = nums.length;
        const arr = Array(n).fill(0);
        for (let i = 0; i < n; ++i) {
            arr[i] = nums[i] - i;
        }
        arr.sort((a, b) => a - b);
        let m = 0;
        for (let i = 0; i < n; ++i) {
            if (i === 0 || arr[i] !== arr[i - 1]) {
                arr[m++] = arr[i];
            }
        }
        arr.length = m;
        const tree = new BinaryIndexedTree(m);
        const search = (nums: number[], x: number): number => {
            let [l, r] = [0, nums.length];
            while (l < r) {
                const mid = (l + r) >> 1;
                if (nums[mid] >= x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        };
        for (let i = 0; i < n; ++i) {
            const j = search(arr, nums[i] - i) + 1;
            const v = Math.max(tree.query(j), 0) + nums[i];
            tree.update(j, v);
        }
        return tree.query(m);
    }
    
    

All Problems

All Solutions