Welcome to Subscribe On Youtube
2915. Length of the Longest Subsequence That Sums to Target
Description
You are given a 0-indexed array of integers nums
, and an integer target
.
Return the length of the longest subsequence of nums
that sums up to target
. If no such subsequence exists, return -1
.
A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [1,2,3,4,5], target = 9 Output: 3 Explanation: There are 3 subsequences with a sum equal to 9: [4,5], [1,3,5], and [2,3,4]. The longest subsequences are [1,3,5], and [2,3,4]. Hence, the answer is 3.
Example 2:
Input: nums = [4,1,3,2,1,5], target = 7 Output: 4 Explanation: There are 5 subsequences with a sum equal to 7: [4,3], [4,1,2], [4,2,1], [1,1,5], and [1,3,2,1]. The longest subsequence is [1,3,2,1]. Hence, the answer is 4.
Example 3:
Input: nums = [1,1,5,4,5], target = 3 Output: -1 Explanation: It can be shown that nums has no subsequence that sums up to 3.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
1 <= target <= 1000
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the length of the longest subsequence that selects several numbers from the first $i$ numbers and the sum of these numbers is exactly $j$. Initially, $f[0][0]=0$, and all other positions are $-\infty$.
For $f[i][j]$, we consider the $i$th number $x$. If we do not select $x$, then $f[i][j]=f[i-1][j]$. If we select $x$, then $f[i][j]=f[i-1][j-x]+1$, where $j\ge x$. Therefore, we have the state transition equation:
\[f[i][j]=\max\{f[i-1][j],f[i-1][j-x]+1\}\]The final answer is $f[n][target]$. If $f[n][target]\le0$, there is no subsequence with a sum of $target$, return $-1$.
The time complexity is $O(n\times target)$, and the space complexity is $O(n\times target)$. Here, $n$ is the length of the array, and $target$ is the target value.
We notice that the state of $f[i][j]$ is only related to $f[i-1][\cdot]$, so we can optimize the first dimension and reduce the space complexity to $O(target)$.
-
class Solution { public int lengthOfLongestSubsequence(List<Integer> nums, int target) { int n = nums.size(); int[][] f = new int[n + 1][target + 1]; final int inf = 1 << 30; for (int[] g : f) { Arrays.fill(g, -inf); } f[0][0] = 0; for (int i = 1; i <= n; ++i) { int x = nums.get(i - 1); for (int j = 0; j <= target; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = Math.max(f[i][j], f[i - 1][j - x] + 1); } } } return f[n][target] <= 0 ? -1 : f[n][target]; } }
-
class Solution { public: int lengthOfLongestSubsequence(vector<int>& nums, int target) { int n = nums.size(); int f[n + 1][target + 1]; memset(f, -0x3f, sizeof(f)); f[0][0] = 0; for (int i = 1; i <= n; ++i) { int x = nums[i - 1]; for (int j = 0; j <= target; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = max(f[i][j], f[i - 1][j - x] + 1); } } } return f[n][target] <= 0 ? -1 : f[n][target]; } };
-
class Solution: def lengthOfLongestSubsequence(self, nums: List[int], target: int) -> int: n = len(nums) f = [[-inf] * (target + 1) for _ in range(n + 1)] f[0][0] = 0 for i, x in enumerate(nums, 1): for j in range(target + 1): f[i][j] = f[i - 1][j] if j >= x: f[i][j] = max(f[i][j], f[i - 1][j - x] + 1) return -1 if f[n][target] <= 0 else f[n][target]
-
func lengthOfLongestSubsequence(nums []int, target int) int { n := len(nums) f := make([][]int, n+1) for i := range f { f[i] = make([]int, target+1) for j := range f[i] { f[i][j] = -(1 << 30) } } f[0][0] = 0 for i := 1; i <= n; i++ { x := nums[i-1] for j := 0; j <= target; j++ { f[i][j] = f[i-1][j] if j >= x { f[i][j] = max(f[i][j], f[i-1][j-x]+1) } } } if f[n][target] <= 0 { return -1 } return f[n][target] }
-
function lengthOfLongestSubsequence(nums: number[], target: number): number { const n = nums.length; const f: number[][] = Array.from({ length: n + 1 }, () => Array(target + 1).fill(-Infinity)); f[0][0] = 0; for (let i = 1; i <= n; ++i) { const x = nums[i - 1]; for (let j = 0; j <= target; ++j) { f[i][j] = f[i - 1][j]; if (j >= x) { f[i][j] = Math.max(f[i][j], f[i - 1][j - x] + 1); } } } return f[n][target] <= 0 ? -1 : f[n][target]; }