Welcome to Subscribe On Youtube

2799. Count Complete Subarrays in an Array

Description

You are given an array nums consisting of positive integers.

We call a subarray of an array complete if the following condition is satisfied:

  • The number of distinct elements in the subarray is equal to the number of distinct elements in the whole array.

Return the number of complete subarrays.

A subarray is a contiguous non-empty part of an array.

 

Example 1:

Input: nums = [1,3,1,2,2]
Output: 4
Explanation: The complete subarrays are the following: [1,3,1,2], [1,3,1,2,2], [3,1,2] and [3,1,2,2].

Example 2:

Input: nums = [5,5,5,5]
Output: 10
Explanation: The array consists only of the integer 5, so any subarray is complete. The number of subarrays that we can choose is 10.

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 2000

Solutions

  • class Solution {
        public int countCompleteSubarrays(int[] nums) {
            Map<Integer, Integer> d = new HashMap<>();
            for (int x : nums) {
                d.put(x, 1);
            }
            int cnt = d.size();
            int ans = 0, n = nums.length;
            d.clear();
            for (int i = 0, j = 0; j < n; ++j) {
                d.merge(nums[j], 1, Integer::sum);
                while (d.size() == cnt) {
                    ans += n - j;
                    if (d.merge(nums[i], -1, Integer::sum) == 0) {
                        d.remove(nums[i]);
                    }
                    ++i;
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int countCompleteSubarrays(vector<int>& nums) {
            unordered_map<int, int> d;
            for (int x : nums) {
                d[x] = 1;
            }
            int cnt = d.size();
            d.clear();
            int ans = 0, n = nums.size();
            for (int i = 0, j = 0; j < n; ++j) {
                d[nums[j]]++;
                while (d.size() == cnt) {
                    ans += n - j;
                    if (--d[nums[i]] == 0) {
                        d.erase(nums[i]);
                    }
                    ++i;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def countCompleteSubarrays(self, nums: List[int]) -> int:
            cnt = len(set(nums))
            d = Counter()
            ans, n = 0, len(nums)
            i = 0
            for j, x in enumerate(nums):
                d[x] += 1
                while len(d) == cnt:
                    ans += n - j
                    d[nums[i]] -= 1
                    if d[nums[i]] == 0:
                        d.pop(nums[i])
                    i += 1
            return ans
    
    
  • func countCompleteSubarrays(nums []int) (ans int) {
    	d := map[int]int{}
    	for _, x := range nums {
    		d[x] = 1
    	}
    	cnt := len(d)
    	i, n := 0, len(nums)
    	d = map[int]int{}
    	for j, x := range nums {
    		d[x]++
    		for len(d) == cnt {
    			ans += n - j
    			d[nums[i]]--
    			if d[nums[i]] == 0 {
    				delete(d, nums[i])
    			}
    			i++
    		}
    	}
    	return
    }
    
  • function countCompleteSubarrays(nums: number[]): number {
        const d: Map<number, number> = new Map();
        for (const x of nums) {
            d.set(x, (d.get(x) ?? 0) + 1);
        }
        const cnt = d.size;
        d.clear();
        const n = nums.length;
        let ans = 0;
        let i = 0;
        for (let j = 0; j < n; ++j) {
            d.set(nums[j], (d.get(nums[j]) ?? 0) + 1);
            while (d.size === cnt) {
                ans += n - j;
                d.set(nums[i], d.get(nums[i])! - 1);
                if (d.get(nums[i]) === 0) {
                    d.delete(nums[i]);
                }
                ++i;
            }
        }
        return ans;
    }
    
    
  • use std::collections::HashMap;
    use std::collections::HashSet;
    impl Solution {
        pub fn count_complete_subarrays(nums: Vec<i32>) -> i32 {
            let n = nums.len();
            let m = nums.iter().collect::<HashSet<&i32>>().len();
            let mut map = HashMap::new();
            let mut ans = 0;
            let mut i = 0;
            for j in 0..n {
                *map.entry(nums[j]).or_insert(0) += 1;
                while map.len() == m {
                    ans += n - j;
                    let v = map.entry(nums[i]).or_default();
                    *v -= 1;
                    if *v == 0 {
                        map.remove(&nums[i]);
                    }
                    i += 1;
                }
            }
            ans as i32
        }
    }
    
    

All Problems

All Solutions