Welcome to Subscribe On Youtube
2908. Minimum Sum of Mountain Triplets I
Description
You are given a 0-indexed array nums
of integers.
A triplet of indices (i, j, k)
is a mountain if:
i < j < k
nums[i] < nums[j]
andnums[k] < nums[j]
Return the minimum possible sum of a mountain triplet of nums
. If no such triplet exists, return -1
.
Example 1:
Input: nums = [8,6,1,5,3] Output: 9 Explanation: Triplet (2, 3, 4) is a mountain triplet of sum 9 since: - 2 < 3 < 4 - nums[2] < nums[3] and nums[4] < nums[3] And the sum of this triplet is nums[2] + nums[3] + nums[4] = 9. It can be shown that there are no mountain triplets with a sum of less than 9.
Example 2:
Input: nums = [5,4,8,7,10,2] Output: 13 Explanation: Triplet (1, 3, 5) is a mountain triplet of sum 13 since: - 1 < 3 < 5 - nums[1] < nums[3] and nums[5] < nums[3] And the sum of this triplet is nums[1] + nums[3] + nums[5] = 13. It can be shown that there are no mountain triplets with a sum of less than 13.
Example 3:
Input: nums = [6,5,4,3,4,5] Output: -1 Explanation: It can be shown that there are no mountain triplets in nums.
Constraints:
3 <= nums.length <= 50
1 <= nums[i] <= 50
Solutions
Solution 1: Preprocessing + Enumeration
We can preprocess the minimum value on the right side of each position and record it in the array $right[i]$, where $right[i]$ represents the minimum value in $nums[i+1..n-1]$.
Next, we enumerate the middle element $nums[i]$ of the mountain triplet from left to right, and use a variable $left$ to represent the minimum value in $ums[0..i-1]$, and a variable $ans$ to represent the current minimum element sum found. For each $i$, we need to find the element $nums[i]$ that satisfies $left < nums[i]$ and $right[i+1] < nums[i]$, and update $ans$.
Finally, if $ans$ is still the initial value, it means that there is no mountain triplet, and we return $-1$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
-
class Solution { public int minimumSum(int[] nums) { int n = nums.length; int[] right = new int[n + 1]; final int inf = 1 << 30; right[n] = inf; for (int i = n - 1; i >= 0; --i) { right[i] = Math.min(right[i + 1], nums[i]); } int ans = inf, left = inf; for (int i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = Math.min(ans, left + nums[i] + right[i + 1]); } left = Math.min(left, nums[i]); } return ans == inf ? -1 : ans; } }
-
class Solution { public: int minimumSum(vector<int>& nums) { int n = nums.size(); const int inf = 1 << 30; int right[n + 1]; right[n] = inf; for (int i = n - 1; ~i; --i) { right[i] = min(right[i + 1], nums[i]); } int ans = inf, left = inf; for (int i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = min(ans, left + nums[i] + right[i + 1]); } left = min(left, nums[i]); } return ans == inf ? -1 : ans; } };
-
class Solution: def minimumSum(self, nums: List[int]) -> int: n = len(nums) right = [inf] * (n + 1) for i in range(n - 1, -1, -1): right[i] = min(right[i + 1], nums[i]) ans = left = inf for i, x in enumerate(nums): if left < x and right[i + 1] < x: ans = min(ans, left + x + right[i + 1]) left = min(left, x) return -1 if ans == inf else ans
-
func minimumSum(nums []int) int { n := len(nums) const inf = 1 << 30 right := make([]int, n+1) right[n] = inf for i := n - 1; i >= 0; i-- { right[i] = min(right[i+1], nums[i]) } ans, left := inf, inf for i, x := range nums { if left < x && right[i+1] < x { ans = min(ans, left+x+right[i+1]) } left = min(left, x) } if ans == inf { return -1 } return ans }
-
function minimumSum(nums: number[]): number { const n = nums.length; const right: number[] = Array(n + 1).fill(Infinity); for (let i = n - 1; ~i; --i) { right[i] = Math.min(right[i + 1], nums[i]); } let [ans, left] = [Infinity, Infinity]; for (let i = 0; i < n; ++i) { if (left < nums[i] && right[i + 1] < nums[i]) { ans = Math.min(ans, left + nums[i] + right[i + 1]); } left = Math.min(left, nums[i]); } return ans === Infinity ? -1 : ans; }