Welcome to Subscribe On Youtube
2903. Find Indices With Index and Value Difference I
Description
You are given a 0-indexed integer array nums
having length n
, an integer indexDifference
, and an integer valueDifference
.
Your task is to find two indices i
and j
, both in the range [0, n - 1]
, that satisfy the following conditions:
abs(i - j) >= indexDifference
, andabs(nums[i] - nums[j]) >= valueDifference
Return an integer array answer
, where answer = [i, j]
if there are two such indices, and answer = [-1, -1]
otherwise. If there are multiple choices for the two indices, return any of them.
Note: i
and j
may be equal.
Example 1:
Input: nums = [5,1,4,1], indexDifference = 2, valueDifference = 4 Output: [0,3] Explanation: In this example, i = 0 and j = 3 can be selected. abs(0 - 3) >= 2 and abs(nums[0] - nums[3]) >= 4. Hence, a valid answer is [0,3]. [3,0] is also a valid answer.
Example 2:
Input: nums = [2,1], indexDifference = 0, valueDifference = 0 Output: [0,0] Explanation: In this example, i = 0 and j = 0 can be selected. abs(0 - 0) >= 0 and abs(nums[0] - nums[0]) >= 0. Hence, a valid answer is [0,0]. Other valid answers are [0,1], [1,0], and [1,1].
Example 3:
Input: nums = [1,2,3], indexDifference = 2, valueDifference = 4 Output: [-1,-1] Explanation: In this example, it can be shown that it is impossible to find two indices that satisfy both conditions. Hence, [-1,-1] is returned.
Constraints:
1 <= n == nums.length <= 100
0 <= nums[i] <= 50
0 <= indexDifference <= 100
0 <= valueDifference <= 50
Solutions
Solution 1: Two Pointers + Maintaining Maximum and Minimum Values
We use two pointers $i$ and $j$ to maintain a sliding window with a gap of $indexDifference$, where $j$ and $i$ point to the left and right boundaries of the window, respectively. Initially, $i$ points to $indexDifference$, and $j` points to $0$.
We use $mi$ and $mx$ to maintain the indices of the minimum and maximum values to the left of pointer $j$.
When pointer $i$ moves to the right, we need to update $mi$ and $mx$. If $nums[j] \lt nums[mi]$, then $mi$ is updated to $j$; if $nums[j] \gt nums[mx]$, then $mx$ is updated to $j$. After updating $mi$ and $mx$, we can determine whether we have found a pair of indices that satisfy the condition. If $nums[i] - nums[mi] \ge valueDifference$, then we have found a pair of indices $[mi, i]$ that satisfy the condition; if $nums[mx] - nums[i] >= valueDifference$, then we have found a pair of indices $[mx, i]$ that satisfy the condition.
If pointer $i$ moves to the end of the array and we have not found a pair of indices that satisfy the condition, we return $[-1, -1]$.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
-
class Solution { public int[] findIndices(int[] nums, int indexDifference, int valueDifference) { int mi = 0; int mx = 0; for (int i = indexDifference; i < nums.length; ++i) { int j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return new int[] {mi, i}; } if (nums[mx] - nums[i] >= valueDifference) { return new int[] {mx, i}; } } return new int[] {-1, -1}; } }
-
class Solution { public: vector<int> findIndices(vector<int>& nums, int indexDifference, int valueDifference) { int mi = 0, mx = 0; for (int i = indexDifference; i < nums.size(); ++i) { int j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return {mi, i}; } if (nums[mx] - nums[i] >= valueDifference) { return {mx, i}; } } return {-1, -1}; } };
-
class Solution: def findIndices( self, nums: List[int], indexDifference: int, valueDifference: int ) -> List[int]: mi = mx = 0 for i in range(indexDifference, len(nums)): j = i - indexDifference if nums[j] < nums[mi]: mi = j if nums[j] > nums[mx]: mx = j if nums[i] - nums[mi] >= valueDifference: return [mi, i] if nums[mx] - nums[i] >= valueDifference: return [mx, i] return [-1, -1]
-
func findIndices(nums []int, indexDifference int, valueDifference int) []int { mi, mx := 0, 0 for i := indexDifference; i < len(nums); i++ { j := i - indexDifference if nums[j] < nums[mi] { mi = j } if nums[j] > nums[mx] { mx = j } if nums[i]-nums[mi] >= valueDifference { return []int{mi, i} } if nums[mx]-nums[i] >= valueDifference { return []int{mx, i} } } return []int{-1, -1} }
-
function findIndices(nums: number[], indexDifference: number, valueDifference: number): number[] { let [mi, mx] = [0, 0]; for (let i = indexDifference; i < nums.length; ++i) { const j = i - indexDifference; if (nums[j] < nums[mi]) { mi = j; } if (nums[j] > nums[mx]) { mx = j; } if (nums[i] - nums[mi] >= valueDifference) { return [mi, i]; } if (nums[mx] - nums[i] >= valueDifference) { return [mx, i]; } } return [-1, -1]; }
-
impl Solution { pub fn find_indices(nums: Vec<i32>, index_difference: i32, value_difference: i32) -> Vec<i32> { let index_difference = index_difference as usize; let mut mi = 0; let mut mx = 0; for i in index_difference..nums.len() { let j = i - index_difference; if nums[j] < nums[mi] { mi = j; } if nums[j] > nums[mx] { mx = j; } if nums[i] - nums[mi] >= value_difference { return vec![mi as i32, i as i32]; } if nums[mx] - nums[i] >= value_difference { return vec![mx as i32, i as i32]; } } vec![-1, -1] } }