Welcome to Subscribe On Youtube
2902. Count of Sub-Multisets With Bounded Sum
Description
You are given a 0-indexed array nums
of non-negative integers, and two integers l
and r
.
Return the count of sub-multisets within nums
where the sum of elements in each subset falls within the inclusive range of [l, r]
.
Since the answer may be large, return it modulo 109 + 7
.
A sub-multiset is an unordered collection of elements of the array in which a given value x
can occur 0, 1, ..., occ[x]
times, where occ[x]
is the number of occurrences of x
in the array.
Note that:
- Two sub-multisets are the same if sorting both sub-multisets results in identical multisets.
- The sum of an empty multiset is
0
.
Example 1:
Input: nums = [1,2,2,3], l = 6, r = 6 Output: 1 Explanation: The only subset of nums that has a sum of 6 is {1, 2, 3}.
Example 2:
Input: nums = [2,1,4,2,7], l = 1, r = 5 Output: 7 Explanation: The subsets of nums that have a sum within the range [1, 5] are {1}, {2}, {4}, {2, 2}, {1, 2}, {1, 4}, and {1, 2, 2}.
Example 3:
Input: nums = [1,2,1,3,5,2], l = 3, r = 5 Output: 9 Explanation: The subsets of nums that have a sum within the range [3, 5] are {3}, {5}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {1, 1, 2}, {1, 1, 3}, and {1, 2, 2}.
Constraints:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
- Sum of
nums
does not exceed2 * 104
. 0 <= l <= r <= 2 * 104
Solutions
-
class Solution { static final int MOD = 1_000_000_007; public int countSubMultisets(List<Integer> nums, int l, int r) { Map<Integer, Integer> count = new HashMap<>(); int total = 0; for (int num : nums) { total += num; if (num <= r) { count.merge(num, 1, Integer::sum); } } if (total < l) { return 0; } r = Math.min(r, total); int[] dp = new int[r + 1]; dp[0] = count.getOrDefault(0, 0) + 1; count.remove(Integer.valueOf(0)); int sum = 0; for (Map.Entry<Integer, Integer> e : count.entrySet()) { int num = e.getKey(); int c = e.getValue(); sum = Math.min(sum + c * num, r); // prefix part // dp[i] = dp[i] + dp[i - num] + ... + dp[i - c*num] + dp[i-(c+1)*num] + ... + dp[i % // num] for (int i = num; i <= sum; i++) { dp[i] = (dp[i] + dp[i - num]) % MOD; } int temp = (c + 1) * num; // correction part // subtract dp[i - (freq + 1) * num] to the end part. // leves dp[i] = dp[i] + dp[i-num] +...+ dp[i - c*num]; for (int i = sum; i >= temp; i--) { dp[i] = (dp[i] - dp[i - temp] + MOD) % MOD; } } int ans = 0; for (int i = l; i <= r; i++) { ans += dp[i]; ans %= MOD; } return ans; } }
-
class Solution: def countSubMultisets(self, nums: List[int], l: int, r: int) -> int: kMod = 1_000_000_007 # dp[i] := # of submultisets of nums with sum i dp = [1] + [0] * r count = collections.Counter(nums) zeros = count.pop(0, 0) for num, freq in count.items(): # stride[i] := dp[i] + dp[i - num] + dp[i - 2 * num] + ... stride = dp.copy() for i in range(num, r + 1): stride[i] += stride[i - num] for i in range(r, 0, -1): if i >= num * (freq + 1): # dp[i] + dp[i - num] + dp[i - freq * num] dp[i] = stride[i] - stride[i - num * (freq + 1)] else: dp[i] = stride[i] return (zeros + 1) * sum(dp[l : r + 1]) % kMod
-
class Solution { public: int countSubMultisets(const vector<int>& nums, int l, int r) { int cnt[20001] = {}; int memo[20001] = {}; const int mod = 1000000007; for (int n : nums) { ++cnt[n]; } fill_n(memo, cnt[1] + 1, 1); for (int n = 2, total = cnt[1]; n <= r; ++n) { if (!cnt[n]) { continue; } int top = (cnt[n] + 1) * n; total += n * cnt[n]; for (int i = n, ii = min(total, r); i <= ii; ++i) { memo[i] = (memo[i] + memo[i - n]) % mod; } for (int i = min(total, r); i >= top; --i) { memo[i] = (mod + memo[i] - memo[i - top]) % mod; } } return accumulate(memo + l, memo + r + 1, 0LL) * (cnt[0] + 1) % mod; } };
-
func countSubMultisets(nums []int, l int, r int) int { multiset := make(map[int]int) for _, num := range nums { multiset[num]++ } mem := make([]int, r+1) mem[0] = 1 prefix := make([]int, len(mem)) for num, occ := range multiset { copy(prefix, mem) for sum := num; sum <= r; sum++ { prefix[sum] = (prefix[sum] + prefix[sum-num]) % mod } for sum := r; sum >= 0; sum-- { if num > 0 { mem[sum] = prefix[sum] if sum >= num*(occ+1) { mem[sum] = (mem[sum] - prefix[sum-num*(occ+1)] + mod) % mod } } else { mem[sum] = (mem[sum] * (occ + 1)) % mod } } } var result int for sum := l; sum <= r; sum++ { result = (result + mem[sum]) % mod } return result } var mod int = 1e9 + 7
-
function countSubMultisets(nums: number[], l: number, r: number): number { const cnt: number[] = Array(20001).fill(0); const memo: number[] = Array(20001).fill(0); const mod: number = 1000000007; for (const n of nums) { cnt[n]++; } memo.fill(1, 0, cnt[1] + 1); let total: number = cnt[1]; for (let n = 2; n <= r; ++n) { if (!cnt[n]) { continue; } const top: number = (cnt[n] + 1) * n; total += n * cnt[n]; for (let i = n, ii = Math.min(total, r); i <= ii; ++i) { memo[i] = (memo[i] + memo[i - n]) % mod; } for (let i = Math.min(total, r); i >= top; --i) { memo[i] = (mod + memo[i] - memo[i - top]) % mod; } } let result: number = 0; for (let i = l; i <= r; i++) { result = (result + memo[i]) % mod; } return (result * (cnt[0] + 1)) % mod; }