Welcome to Subscribe On Youtube
2771. Longest Non-decreasing Subarray From Two Arrays
Description
You are given two 0-indexed integer arrays nums1
and nums2
of length n
.
Let's define another 0-indexed integer array, nums3
, of length n
. For each index i
in the range [0, n - 1]
, you can assign either nums1[i]
or nums2[i]
to nums3[i]
.
Your task is to maximize the length of the longest non-decreasing subarray in nums3
by choosing its values optimally.
Return an integer representing the length of the longest non-decreasing subarray in nums3
.
Note: A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums1 = [2,3,1], nums2 = [1,2,1] Output: 2 Explanation: One way to construct nums3 is: nums3 = [nums1[0], nums2[1], nums2[2]] => [2,2,1]. The subarray starting from index 0 and ending at index 1, [2,2], forms a non-decreasing subarray of length 2. We can show that 2 is the maximum achievable length.
Example 2:
Input: nums1 = [1,3,2,1], nums2 = [2,2,3,4] Output: 4 Explanation: One way to construct nums3 is: nums3 = [nums1[0], nums2[1], nums2[2], nums2[3]] => [1,2,3,4]. The entire array forms a non-decreasing subarray of length 4, making it the maximum achievable length.
Example 3:
Input: nums1 = [1,1], nums2 = [2,2] Output: 2 Explanation: One way to construct nums3 is: nums3 = [nums1[0], nums1[1]] => [1,1]. The entire array forms a non-decreasing subarray of length 2, making it the maximum achievable length.
Constraints:
1 <= nums1.length == nums2.length == n <= 105
1 <= nums1[i], nums2[i] <= 109
Solutions
Solution 1:Dynamic Programming
We define two variables $f$ and $g$, which represent the longest non-decreasing subarray length at the current position, where $f$ represents the longest non-decreasing subarray length ending in the $nums1$ element, and $g$ represents the longest non-decreasing subarray length ending in the $nums2$ element. At the beginning, $f = g = 1$, and the initial answer $ans = 1$.
Next, we traverse the array elements in the range of $i \in [1, n)$, for each $i$, we define two variables $ff$ and $gg$, which represent the longest non-decreasing subarray length ending in the $nums1[i]$ and $nums2[i]$ element, respectively, and initialize $ff = gg = 1$.
We can calculate the value of $ff$ and $gg$ from the values of $f$ and $g$:
- If $nums1[i] \ge nums1[i - 1]$, then $ff = max(ff, f + 1)$;
- If $nums1[i] \ge nums2[i - 1]$, then $ff = max(ff, g + 1)$;
- If $nums2[i] \ge nums1[i - 1]$, then $gg = max(gg, f + 1)$;
- If $nums2[i] \ge nums2[i - 1]$, then $gg = max(gg, g + 1)$.
Then, we update $f = ff$ and $g = gg$, and update $ans$ to $max(ans, f, g)$.
After the traversal is over, we return $ans$.
The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.
-
class Solution { public int maxNonDecreasingLength(int[] nums1, int[] nums2) { int n = nums1.length; int f = 1, g = 1; int ans = 1; for (int i = 1; i < n; ++i) { int ff = 1, gg = 1; if (nums1[i] >= nums1[i - 1]) { ff = Math.max(ff, f + 1); } if (nums1[i] >= nums2[i - 1]) { ff = Math.max(ff, g + 1); } if (nums2[i] >= nums1[i - 1]) { gg = Math.max(gg, f + 1); } if (nums2[i] >= nums2[i - 1]) { gg = Math.max(gg, g + 1); } f = ff; g = gg; ans = Math.max(ans, Math.max(f, g)); } return ans; } }
-
class Solution { public: int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) { int n = nums1.size(); int f = 1, g = 1; int ans = 1; for (int i = 1; i < n; ++i) { int ff = 1, gg = 1; if (nums1[i] >= nums1[i - 1]) { ff = max(ff, f + 1); } if (nums1[i] >= nums2[i - 1]) { ff = max(ff, g + 1); } if (nums2[i] >= nums1[i - 1]) { gg = max(gg, f + 1); } if (nums2[i] >= nums2[i - 1]) { gg = max(gg, g + 1); } f = ff; g = gg; ans = max(ans, max(f, g)); } return ans; } };
-
class Solution: def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int: n = len(nums1) f = g = 1 ans = 1 for i in range(1, n): ff = gg = 1 if nums1[i] >= nums1[i - 1]: ff = max(ff, f + 1) if nums1[i] >= nums2[i - 1]: ff = max(ff, g + 1) if nums2[i] >= nums1[i - 1]: gg = max(gg, f + 1) if nums2[i] >= nums2[i - 1]: gg = max(gg, g + 1) f, g = ff, gg ans = max(ans, f, g) return ans
-
func maxNonDecreasingLength(nums1 []int, nums2 []int) int { n := len(nums1) f, g, ans := 1, 1, 1 for i := 1; i < n; i++ { ff, gg := 1, 1 if nums1[i] >= nums1[i-1] { ff = max(ff, f+1) } if nums1[i] >= nums2[i-1] { ff = max(ff, g+1) } if nums2[i] >= nums1[i-1] { gg = max(gg, f+1) } if nums2[i] >= nums2[i-1] { gg = max(gg, g+1) } f, g = ff, gg ans = max(ans, max(f, g)) } return ans } func max(a, b int) int { if a > b { return a } return b }
-
function maxNonDecreasingLength(nums1: number[], nums2: number[]): number { const n = nums1.length; let [f, g, ans] = [1, 1, 1]; for (let i = 1; i < n; ++i) { let [ff, gg] = [1, 1]; if (nums1[i] >= nums1[i - 1]) { ff = Math.max(ff, f + 1); } if (nums1[i] >= nums2[i - 1]) { ff = Math.max(ff, g + 1); } if (nums2[i] >= nums1[i - 1]) { gg = Math.max(gg, f + 1); } if (nums2[i] >= nums2[i - 1]) { gg = Math.max(gg, g + 1); } f = ff; g = gg; ans = Math.max(ans, f, g); } return ans; }