Welcome to Subscribe On Youtube
2906. Construct Product Matrix
Description
Given a 0-indexed 2D integer matrix grid
of size n * m
, we define a 0-indexed 2D matrix p
of size n * m
as the product matrix of grid
if the following condition is met:
- Each element
p[i][j]
is calculated as the product of all elements ingrid
except for the elementgrid[i][j]
. This product is then taken modulo12345
.
Return the product matrix of grid
.
Example 1:
Input: grid = [[1,2],[3,4]] Output: [[24,12],[8,6]] Explanation: p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24 p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12 p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8 p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6 So the answer is [[24,12],[8,6]].
Example 2:
Input: grid = [[12345],[2],[1]] Output: [[2],[0],[0]] Explanation: p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2. p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0. p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0. So the answer is [[2],[0],[0]].
Constraints:
1 <= n == grid.length <= 105
1 <= m == grid[i].length <= 105
2 <= n * m <= 105
1 <= grid[i][j] <= 109
Solutions
-
class Solution { public int[][] constructProductMatrix(int[][] grid) { final int mod = 12345; int n = grid.length, m = grid[0].length; int[][] p = new int[n][m]; long suf = 1; for (int i = n - 1; i >= 0; --i) { for (int j = m - 1; j >= 0; --j) { p[i][j] = (int) suf; suf = suf * grid[i][j] % mod; } } long pre = 1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { p[i][j] = (int) (p[i][j] * pre % mod); pre = pre * grid[i][j] % mod; } } return p; } }
-
class Solution { public: vector<vector<int>> constructProductMatrix(vector<vector<int>>& grid) { const int mod = 12345; int n = grid.size(), m = grid[0].size(); vector<vector<int>> p(n, vector<int>(m)); long long suf = 1; for (int i = n - 1; i >= 0; --i) { for (int j = m - 1; j >= 0; --j) { p[i][j] = suf; suf = suf * grid[i][j] % mod; } } long long pre = 1; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { p[i][j] = p[i][j] * pre % mod; pre = pre * grid[i][j] % mod; } } return p; } };
-
class Solution: def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]: n, m = len(grid), len(grid[0]) p = [[0] * m for _ in range(n)] mod = 12345 suf = 1 for i in range(n - 1, -1, -1): for j in range(m - 1, -1, -1): p[i][j] = suf suf = suf * grid[i][j] % mod pre = 1 for i in range(n): for j in range(m): p[i][j] = p[i][j] * pre % mod pre = pre * grid[i][j] % mod return p
-
func constructProductMatrix(grid [][]int) [][]int { const mod int = 12345 n, m := len(grid), len(grid[0]) p := make([][]int, n) for i := range p { p[i] = make([]int, m) } suf := 1 for i := n - 1; i >= 0; i-- { for j := m - 1; j >= 0; j-- { p[i][j] = suf suf = suf * grid[i][j] % mod } } pre := 1 for i := 0; i < n; i++ { for j := 0; j < m; j++ { p[i][j] = p[i][j] * pre % mod pre = pre * grid[i][j] % mod } } return p }
-
function constructProductMatrix(grid: number[][]): number[][] { const mod = 12345; const [n, m] = [grid.length, grid[0].length]; const p: number[][] = Array.from({ length: n }, () => Array.from({ length: m }, () => 0)); let suf = 1; for (let i = n - 1; ~i; --i) { for (let j = m - 1; ~j; --j) { p[i][j] = suf; suf = (suf * grid[i][j]) % mod; } } let pre = 1; for (let i = 0; i < n; ++i) { for (let j = 0; j < m; ++j) { p[i][j] = (p[i][j] * pre) % mod; pre = (pre * grid[i][j]) % mod; } } return p; }
-
impl Solution { pub fn construct_product_matrix(grid: Vec<Vec<i32>>) -> Vec<Vec<i32>> { let modulo: i32 = 12345; let n = grid.len(); let m = grid[0].len(); let mut p: Vec<Vec<i32>> = vec![vec![0; m]; n]; let mut suf = 1; for i in (0..n).rev() { for j in (0..m).rev() { p[i][j] = suf; suf = (suf as i64 * grid[i][j] as i64 % modulo as i64) as i32; } } let mut pre = 1; for i in 0..n { for j in 0..m { p[i][j] = (p[i][j] as i64 * pre as i64 % modulo as i64) as i32; pre = (pre as i64 * grid[i][j] as i64 % modulo as i64) as i32; } } p } }