Welcome to Subscribe On Youtube

2906. Construct Product Matrix

Description

Given a 0-indexed 2D integer matrix grid of size n * m, we define a 0-indexed 2D matrix p of size n * m as the product matrix of grid if the following condition is met:

  • Each element p[i][j] is calculated as the product of all elements in grid except for the element grid[i][j]. This product is then taken modulo 12345.

Return the product matrix of grid.

 

Example 1:

Input: grid = [[1,2],[3,4]]
Output: [[24,12],[8,6]]
Explanation: p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24
p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12
p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8
p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6
So the answer is [[24,12],[8,6]].

Example 2:

Input: grid = [[12345],[2],[1]]
Output: [[2],[0],[0]]
Explanation: p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2.
p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0.
p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0.
So the answer is [[2],[0],[0]].

 

Constraints:

  • 1 <= n == grid.length <= 105
  • 1 <= m == grid[i].length <= 105
  • 2 <= n * m <= 105
  • 1 <= grid[i][j] <= 109

Solutions

  • class Solution {
        public int[][] constructProductMatrix(int[][] grid) {
            final int mod = 12345;
            int n = grid.length, m = grid[0].length;
            int[][] p = new int[n][m];
            long suf = 1;
            for (int i = n - 1; i >= 0; --i) {
                for (int j = m - 1; j >= 0; --j) {
                    p[i][j] = (int) suf;
                    suf = suf * grid[i][j] % mod;
                }
            }
            long pre = 1;
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < m; ++j) {
                    p[i][j] = (int) (p[i][j] * pre % mod);
                    pre = pre * grid[i][j] % mod;
                }
            }
            return p;
        }
    }
    
  • class Solution {
    public:
        vector<vector<int>> constructProductMatrix(vector<vector<int>>& grid) {
            const int mod = 12345;
            int n = grid.size(), m = grid[0].size();
            vector<vector<int>> p(n, vector<int>(m));
            long long suf = 1;
            for (int i = n - 1; i >= 0; --i) {
                for (int j = m - 1; j >= 0; --j) {
                    p[i][j] = suf;
                    suf = suf * grid[i][j] % mod;
                }
            }
            long long pre = 1;
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < m; ++j) {
                    p[i][j] = p[i][j] * pre % mod;
                    pre = pre * grid[i][j] % mod;
                }
            }
            return p;
        }
    };
    
  • class Solution:
        def constructProductMatrix(self, grid: List[List[int]]) -> List[List[int]]:
            n, m = len(grid), len(grid[0])
            p = [[0] * m for _ in range(n)]
            mod = 12345
            suf = 1
            for i in range(n - 1, -1, -1):
                for j in range(m - 1, -1, -1):
                    p[i][j] = suf
                    suf = suf * grid[i][j] % mod
            pre = 1
            for i in range(n):
                for j in range(m):
                    p[i][j] = p[i][j] * pre % mod
                    pre = pre * grid[i][j] % mod
            return p
    
    
  • func constructProductMatrix(grid [][]int) [][]int {
    	const mod int = 12345
    	n, m := len(grid), len(grid[0])
    	p := make([][]int, n)
    	for i := range p {
    		p[i] = make([]int, m)
    	}
    	suf := 1
    	for i := n - 1; i >= 0; i-- {
    		for j := m - 1; j >= 0; j-- {
    			p[i][j] = suf
    			suf = suf * grid[i][j] % mod
    		}
    	}
    	pre := 1
    	for i := 0; i < n; i++ {
    		for j := 0; j < m; j++ {
    			p[i][j] = p[i][j] * pre % mod
    			pre = pre * grid[i][j] % mod
    		}
    	}
    	return p
    }
    
  • function constructProductMatrix(grid: number[][]): number[][] {
        const mod = 12345;
        const [n, m] = [grid.length, grid[0].length];
        const p: number[][] = Array.from({ length: n }, () => Array.from({ length: m }, () => 0));
        let suf = 1;
        for (let i = n - 1; ~i; --i) {
            for (let j = m - 1; ~j; --j) {
                p[i][j] = suf;
                suf = (suf * grid[i][j]) % mod;
            }
        }
        let pre = 1;
        for (let i = 0; i < n; ++i) {
            for (let j = 0; j < m; ++j) {
                p[i][j] = (p[i][j] * pre) % mod;
                pre = (pre * grid[i][j]) % mod;
            }
        }
        return p;
    }
    
    
  • impl Solution {
        pub fn construct_product_matrix(grid: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
            let modulo: i32 = 12345;
            let n = grid.len();
            let m = grid[0].len();
            let mut p: Vec<Vec<i32>> = vec![vec![0; m]; n];
            let mut suf = 1;
    
            for i in (0..n).rev() {
                for j in (0..m).rev() {
                    p[i][j] = suf;
                    suf = (suf as i64 * grid[i][j] as i64 % modulo as i64) as i32;
                }
            }
    
            let mut pre = 1;
    
            for i in 0..n {
                for j in 0..m {
                    p[i][j] = (p[i][j] as i64 * pre as i64 % modulo as i64) as i32;
                    pre = (pre as i64 * grid[i][j] as i64 % modulo as i64) as i32;
                }
            }
    
            p
        }
    }
    

All Problems

All Solutions