Welcome to Subscribe On Youtube
2902. Count of Sub-Multisets With Bounded Sum
Description
You are given a 0-indexed array nums
of non-negative integers, and two integers l
and r
.
Return the count of sub-multisets within nums
where the sum of elements in each subset falls within the inclusive range of [l, r]
.
Since the answer may be large, return it modulo 109 + 7
.
A sub-multiset is an unordered collection of elements of the array in which a given value x
can occur 0, 1, ..., occ[x]
times, where occ[x]
is the number of occurrences of x
in the array.
Note that:
- Two sub-multisets are the same if sorting both sub-multisets results in identical multisets.
- The sum of an empty multiset is
0
.
Example 1:
Input: nums = [1,2,2,3], l = 6, r = 6 Output: 1 Explanation: The only subset of nums that has a sum of 6 is {1, 2, 3}.
Example 2:
Input: nums = [2,1,4,2,7], l = 1, r = 5 Output: 7 Explanation: The subsets of nums that have a sum within the range [1, 5] are {1}, {2}, {4}, {2, 2}, {1, 2}, {1, 4}, and {1, 2, 2}.
Example 3:
Input: nums = [1,2,1,3,5,2], l = 3, r = 5 Output: 9 Explanation: The subsets of nums that have a sum within the range [3, 5] are {3}, {5}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {1, 1, 2}, {1, 1, 3}, and {1, 2, 2}.
Constraints:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
- Sum of
nums
does not exceed2 * 104
. 0 <= l <= r <= 2 * 104
Solutions
-
class Solution: def countSubMultisets(self, nums: List[int], l: int, r: int) -> int: kMod = 1_000_000_007 # dp[i] := # of submultisets of nums with sum i dp = [1] + [0] * r count = collections.Counter(nums) zeros = count.pop(0, 0) for num, freq in count.items(): # stride[i] := dp[i] + dp[i - num] + dp[i - 2 * num] + ... stride = dp.copy() for i in range(num, r + 1): stride[i] += stride[i - num] for i in range(r, 0, -1): if i >= num * (freq + 1): # dp[i] + dp[i - num] + dp[i - freq * num] dp[i] = stride[i] - stride[i - num * (freq + 1)] else: dp[i] = stride[i] return (zeros + 1) * sum(dp[l : r + 1]) % kMod
-
class Solution { static final int MOD = 1_000_000_007; public int countSubMultisets(List<Integer> nums, int l, int r) { Map<Integer, Integer> count = new HashMap<>(); int total = 0; for (int num : nums) { total += num; if (num <= r) { count.merge(num, 1, Integer::sum); } } if (total < l) { return 0; } r = Math.min(r, total); int[] dp = new int[r + 1]; dp[0] = count.getOrDefault(0, 0) + 1; count.remove(Integer.valueOf(0)); int sum = 0; for (Map.Entry<Integer, Integer> e : count.entrySet()) { int num = e.getKey(); int c = e.getValue(); sum = Math.min(sum + c * num, r); // prefix part // dp[i] = dp[i] + dp[i - num] + ... + dp[i - c*num] + dp[i-(c+1)*num] + ... + dp[i % // num] for (int i = num; i <= sum; i++) { dp[i] = (dp[i] + dp[i - num]) % MOD; } int temp = (c + 1) * num; // correction part // subtract dp[i - (freq + 1) * num] to the end part. // leves dp[i] = dp[i] + dp[i-num] +...+ dp[i - c*num]; for (int i = sum; i >= temp; i--) { dp[i] = (dp[i] - dp[i - temp] + MOD) % MOD; } } int ans = 0; for (int i = l; i <= r; i++) { ans += dp[i]; ans %= MOD; } return ans; } }