Welcome to Subscribe On Youtube
2875. Minimum Size Subarray in Infinite Array
Description
You are given a 0-indexed array nums
and an integer target
.
A 0-indexed array infinite_nums
is generated by infinitely appending the elements of nums
to itself.
Return the length of the shortest subarray of the array infinite_nums
with a sum equal to target
. If there is no such subarray return -1
.
Example 1:
Input: nums = [1,2,3], target = 5 Output: 2 Explanation: In this example infinite_nums = [1,2,3,1,2,3,1,2,...]. The subarray in the range [1,2], has the sum equal to target = 5 and length = 2. It can be proven that 2 is the shortest length of a subarray with sum equal to target = 5.
Example 2:
Input: nums = [1,1,1,2,3], target = 4 Output: 2 Explanation: In this example infinite_nums = [1,1,1,2,3,1,1,1,2,3,1,1,...]. The subarray in the range [4,5], has the sum equal to target = 4 and length = 2. It can be proven that 2 is the shortest length of a subarray with sum equal to target = 4.
Example 3:
Input: nums = [2,4,6,8], target = 3 Output: -1 Explanation: In this example infinite_nums = [2,4,6,8,2,4,6,8,...]. It can be proven that there is no subarray with sum equal to target = 3.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 105
1 <= target <= 109
Solutions
Solution 1: Prefix Sum + Hash Table
First, we calculate the sum of all elements in the array $nums$, denoted as $s$.
If $target \gt s$, we can reduce $target$ to the range $[0, s)$ by subtracting $\lfloor \frac{target}{s} \rfloor \times s$ from it. Then, the length of the subarray is $a = \lfloor \frac{target}{s} \rfloor \times n$, where $n$ is the length of the array $nums$.
Next, we need to find the shortest subarray in $nums$ whose sum equals $target$, or the shortest subarray whose prefix sum plus suffix sum equals $s - target$. We can use prefix sum and a hash table to find such subarrays.
If we find such a subarray, the final answer is $a + b$. Otherwise, the answer is $-1$.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where n is the length of the array $nums$.
-
class Solution { public int minSizeSubarray(int[] nums, int target) { long s = Arrays.stream(nums).sum(); int n = nums.length; int a = 0; if (target > s) { a = n * (target / (int) s); target -= target / s * s; } if (target == s) { return n; } Map<Long, Integer> pos = new HashMap<>(); pos.put(0L, -1); long pre = 0; int b = 1 << 30; for (int i = 0; i < n; ++i) { pre += nums[i]; if (pos.containsKey(pre - target)) { b = Math.min(b, i - pos.get(pre - target)); } if (pos.containsKey(pre - (s - target))) { b = Math.min(b, n - (i - pos.get(pre - (s - target)))); } pos.put(pre, i); } return b == 1 << 30 ? -1 : a + b; } }
-
class Solution { public: int minSizeSubarray(vector<int>& nums, int target) { long long s = accumulate(nums.begin(), nums.end(), 0LL); int n = nums.size(); int a = 0; if (target > s) { a = n * (target / s); target -= target / s * s; } if (target == s) { return n; } unordered_map<int, int> pos{ {0, -1} }; long long pre = 0; int b = 1 << 30; for (int i = 0; i < n; ++i) { pre += nums[i]; if (pos.count(pre - target)) { b = min(b, i - pos[pre - target]); } if (pos.count(pre - (s - target))) { b = min(b, n - (i - pos[pre - (s - target)])); } pos[pre] = i; } return b == 1 << 30 ? -1 : a + b; } };
-
class Solution: def minSizeSubarray(self, nums: List[int], target: int) -> int: s = sum(nums) n = len(nums) a = 0 if target > s: a = n * (target // s) target -= target // s * s if target == s: return n pos = {0: -1} pre = 0 b = inf for i, x in enumerate(nums): pre += x if (t := pre - target) in pos: b = min(b, i - pos[t]) if (t := pre - (s - target)) in pos: b = min(b, n - (i - pos[t])) pos[pre] = i return -1 if b == inf else a + b
-
func minSizeSubarray(nums []int, target int) int { s := 0 for _, x := range nums { s += x } n := len(nums) a := 0 if target > s { a = n * (target / s) target -= target / s * s } if target == s { return n } pos := map[int]int{0: -1} pre := 0 b := 1 << 30 for i, x := range nums { pre += x if j, ok := pos[pre-target]; ok { b = min(b, i-j) } if j, ok := pos[pre-(s-target)]; ok { b = min(b, n-(i-j)) } pos[pre] = i } if b == 1<<30 { return -1 } return a + b }
-
function minSizeSubarray(nums: number[], target: number): number { const s = nums.reduce((a, b) => a + b); const n = nums.length; let a = 0; if (target > s) { a = n * ((target / s) | 0); target -= ((target / s) | 0) * s; } if (target === s) { return n; } const pos: Map<number, number> = new Map(); let pre = 0; pos.set(0, -1); let b = Infinity; for (let i = 0; i < n; ++i) { pre += nums[i]; if (pos.has(pre - target)) { b = Math.min(b, i - pos.get(pre - target)!); } if (pos.has(pre - (s - target))) { b = Math.min(b, n - (i - pos.get(pre - (s - target))!)); } pos.set(pre, i); } return b === Infinity ? -1 : a + b; }