Welcome to Subscribe On Youtube
2867. Count Valid Paths in a Tree
Description
There is an undirected tree with n
nodes labeled from 1
to n
. You are given the integer n
and a 2D integer array edges
of length n - 1
, where edges[i] = [ui, vi]
indicates that there is an edge between nodes ui
and vi
in the tree.
Return the number of valid paths in the tree.
A path (a, b)
is valid if there exists exactly one prime number among the node labels in the path from a
to b
.
Note that:
- The path
(a, b)
is a sequence of distinct nodes starting with nodea
and ending with nodeb
such that every two adjacent nodes in the sequence share an edge in the tree. - Path
(a, b)
and path(b, a)
are considered the same and counted only once.
Example 1:
Input: n = 5, edges = [[1,2],[1,3],[2,4],[2,5]] Output: 4 Explanation: The pairs with exactly one prime number on the path between them are: - (1, 2) since the path from 1 to 2 contains prime number 2. - (1, 3) since the path from 1 to 3 contains prime number 3. - (1, 4) since the path from 1 to 4 contains prime number 2. - (2, 4) since the path from 2 to 4 contains prime number 2. It can be shown that there are only 4 valid paths.
Example 2:
Input: n = 6, edges = [[1,2],[1,3],[2,4],[3,5],[3,6]] Output: 6 Explanation: The pairs with exactly one prime number on the path between them are: - (1, 2) since the path from 1 to 2 contains prime number 2. - (1, 3) since the path from 1 to 3 contains prime number 3. - (1, 4) since the path from 1 to 4 contains prime number 2. - (1, 6) since the path from 1 to 6 contains prime number 3. - (2, 4) since the path from 2 to 4 contains prime number 2. - (3, 6) since the path from 3 to 6 contains prime number 3. It can be shown that there are only 6 valid paths.
Constraints:
1 <= n <= 105
edges.length == n - 1
edges[i].length == 2
1 <= ui, vi <= n
- The input is generated such that
edges
represent a valid tree.
Solutions
Solution 1: Preprocessing + Union-Find + Enumeration
We can preprocess to get all the prime numbers in $[1, n]$, where $prime[i]$ indicates whether $i$ is a prime number.
Next, we build a graph $g$ based on the two-dimensional integer array, where $g[i]$ represents all the neighbor nodes of node $i$. If both nodes of an edge are not prime numbers, we merge these two nodes into the same connected component.
Then, we enumerate all prime numbers $i$ in the range of $[1, n]$, considering all paths that include $i$.
Since $i$ is already a prime number, if $i$ is an endpoint of the path, we only need to accumulate the sizes of all connected components adjacent to node $i$. If $i$ is a middle point on the path, we need to accumulate the product of the sizes of any two adjacent connected components.
The time complexity is $O(n \times \alpha(n))$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes, and $\alpha$ is the inverse function of the Ackermann function.
-
class Solution { public long countPaths(int n, int[][] edges) { List<Boolean> prime = new ArrayList<>(n + 1); for (int i = 0; i <= n; ++i) { prime.add(true); } prime.set(1, false); List<Integer> all = new ArrayList<>(); for (int i = 2; i <= n; ++i) { if (prime.get(i)) { all.add(i); } for (int x : all) { int temp = i * x; if (temp > n) { break; } prime.set(temp, false); if (i % x == 0) { break; } } } List<List<Integer>> con = new ArrayList<>(n + 1); for (int i = 0; i <= n; ++i) { con.add(new ArrayList<>()); } for (int[] e : edges) { con.get(e[0]).add(e[1]); con.get(e[1]).add(e[0]); } long[] r = {0}; dfs(1, 0, con, prime, r); return r[0]; } private long mul(long x, long y) { return x * y; } private class Pair { int first; int second; Pair(int first, int second) { this.first = first; this.second = second; } } private Pair dfs(int x, int f, List<List<Integer>> con, List<Boolean> prime, long[] r) { Pair v = new Pair(!prime.get(x) ? 1 : 0, prime.get(x) ? 1 : 0); for (int y : con.get(x)) { if (y == f) continue; Pair p = dfs(y, x, con, prime, r); r[0] += mul(p.first, v.second) + mul(p.second, v.first); if (prime.get(x)) { v.second += p.first; } else { v.first += p.first; v.second += p.second; } } return v; } }
-
class Solution { long long mul(long long x, long long y) { return x * y; } pair<int, int> dfs(int x, int f, const vector<vector<int>>& con, const vector<bool>& prime, long long& r) { pair<int, int> v = {!prime[x], prime[x]}; for (int y : con[x]) { if (y == f) continue; const auto& p = dfs(y, x, con, prime, r); r += mul(p.first, v.second) + mul(p.second, v.first); if (prime[x]) { v.second += p.first; } else { v.first += p.first; v.second += p.second; } } return v; } public: long long countPaths(int n, vector<vector<int>>& edges) { vector<bool> prime(n + 1, true); prime[1] = false; vector<int> all; for (int i = 2; i <= n; ++i) { if (prime[i]) { all.push_back(i); } for (int x : all) { const int temp = i * x; if (temp > n) { break; } prime[temp] = false; if (i % x == 0) { break; } } } vector<vector<int>> con(n + 1); for (const auto& e : edges) { con[e[0]].push_back(e[1]); con[e[1]].push_back(e[0]); } long long r = 0; dfs(1, 0, con, prime, r); return r; } };
-
class Solution: def countPaths(self, n: int, edges: List[List[int]]) -> int: def mul(x, y): return x * y def dfs(x, f, con, prime, r): v = [1 - prime[x], prime[x]] for y in con[x]: if y == f: continue p = dfs(y, x, con, prime, r) r[0] += mul(p[0], v[1]) + mul(p[1], v[0]) if prime[x]: v[1] += p[0] else: v[0] += p[0] v[1] += p[1] return v prime = [True] * (n + 1) prime[1] = False all_primes = [] for i in range(2, n + 1): if prime[i]: all_primes.append(i) for x in all_primes: temp = i * x if temp > n: break prime[temp] = False if i % x == 0: break con = [[] for _ in range(n + 1)] for e in edges: con[e[0]].append(e[1]) con[e[1]].append(e[0]) r = [0] dfs(1, 0, con, prime, r) return r[0]
-
const mx int = 1e5 + 10 var prime [mx]bool func init() { for i := 2; i < mx; i++ { prime[i] = true } for i := 2; i < mx; i++ { if prime[i] { for j := i + i; j < mx; j += i { prime[j] = false } } } } type unionFind struct { p, size []int } func newUnionFind(n int) *unionFind { p := make([]int, n) size := make([]int, n) for i := range p { p[i] = i size[i] = 1 } return &unionFind{p, size} } func (uf *unionFind) find(x int) int { if uf.p[x] != x { uf.p[x] = uf.find(uf.p[x]) } return uf.p[x] } func (uf *unionFind) union(a, b int) bool { pa, pb := uf.find(a), uf.find(b) if pa == pb { return false } if uf.size[pa] > uf.size[pb] { uf.p[pb] = pa uf.size[pa] += uf.size[pb] } else { uf.p[pa] = pb uf.size[pb] += uf.size[pa] } return true } func (uf *unionFind) getSize(x int) int { return uf.size[uf.find(x)] } func countPaths(n int, edges [][]int) (ans int64) { uf := newUnionFind(n + 1) g := make([][]int, n+1) for _, e := range edges { u, v := e[0], e[1] g[u] = append(g[u], v) g[v] = append(g[v], u) if !prime[u] && !prime[v] { uf.union(u, v) } } for i := 1; i <= n; i++ { if prime[i] { t := 0 for _, j := range g[i] { if !prime[j] { cnt := uf.getSize(j) ans += int64(cnt + cnt*t) t += cnt } } } } return }
-
const mx = 100010; const prime = Array(mx).fill(true); prime[0] = prime[1] = false; for (let i = 2; i <= mx; ++i) { if (prime[i]) { for (let j = i + i; j <= mx; j += i) { prime[j] = false; } } } class UnionFind { p: number[]; size: number[]; constructor(n: number) { this.p = Array(n) .fill(0) .map((_, i) => i); this.size = Array(n).fill(1); } find(x: number): number { if (this.p[x] !== x) { this.p[x] = this.find(this.p[x]); } return this.p[x]; } union(a: number, b: number): boolean { const [pa, pb] = [this.find(a), this.find(b)]; if (pa === pb) { return false; } if (this.size[pa] > this.size[pb]) { this.p[pb] = pa; this.size[pa] += this.size[pb]; } else { this.p[pa] = pb; this.size[pb] += this.size[pa]; } return true; } getSize(x: number): number { return this.size[this.find(x)]; } } function countPaths(n: number, edges: number[][]): number { const uf = new UnionFind(n + 1); const g: number[][] = Array(n + 1) .fill(0) .map(() => []); for (const [u, v] of edges) { g[u].push(v); g[v].push(u); if (!prime[u] && !prime[v]) { uf.union(u, v); } } let ans = 0; for (let i = 1; i <= n; ++i) { if (prime[i]) { let t = 0; for (let j of g[i]) { if (!prime[j]) { const cnt = uf.getSize(j); ans += cnt + t * cnt; t += cnt; } } } } return ans; }