Welcome to Subscribe On Youtube
2856. Minimum Array Length After Pair Removals
Description
You are given a 0-indexed sorted array of integers nums
.
You can perform the following operation any number of times:
- Choose two indices,
i
andj
, wherei < j
, such thatnums[i] < nums[j]
. - Then, remove the elements at indices
i
andj
fromnums
. The remaining elements retain their original order, and the array is re-indexed.
Return an integer that denotes the minimum length of nums
after performing the operation any number of times (including zero).
Note that nums
is sorted in non-decreasing order.
Example 1:
Input: nums = [1,3,4,9] Output: 0 Explanation: Initially, nums = [1, 3, 4, 9]. In the first operation, we can choose index 0 and 1 because nums[0] < nums[1] <=> 1 < 3. Remove indices 0 and 1, and nums becomes [4, 9]. For the next operation, we can choose index 0 and 1 because nums[0] < nums[1] <=> 4 < 9. Remove indices 0 and 1, and nums becomes an empty array []. Hence, the minimum length achievable is 0.
Example 2:
Input: nums = [2,3,6,9] Output: 0 Explanation: Initially, nums = [2, 3, 6, 9]. In the first operation, we can choose index 0 and 2 because nums[0] < nums[2] <=> 2 < 6. Remove indices 0 and 2, and nums becomes [3, 9]. For the next operation, we can choose index 0 and 1 because nums[0] < nums[1] <=> 3 < 9. Remove indices 0 and 1, and nums becomes an empty array []. Hence, the minimum length achievable is 0.
Example 3:
Input: nums = [1,1,2] Output: 1 Explanation: Initially, nums = [1, 1, 2]. In an operation, we can choose index 0 and 2 because nums[0] < nums[2] <=> 1 < 2. Remove indices 0 and 2, and nums becomes [1]. It is no longer possible to perform an operation on the array. Hence, the minimum achievable length is 1.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
nums
is sorted in non-decreasing order.
Solutions
Solution 1: Greedy + Priority Queue (Max Heap)
We use a hash table $cnt$ to count the occurrence of each element in the array $nums$, then add each value in $cnt$ to a priority queue (max heap) $pq$. Each time we take out two elements $x$ and $y$ from $pq$, decrease their values by one. If the value after decrement is still greater than $0$, we add the decremented value back to $pq$. Each time we take out two elements from $pq$, it means we delete a pair of numbers from the array, so the length of the array decreases by $2$. When the size of $pq$ is less than $2$, we stop the deletion operation.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int minLengthAfterRemovals(List<Integer> nums) { Map<Integer, Integer> cnt = new HashMap<>(); for (int x : nums) { cnt.merge(x, 1, Integer::sum); } PriorityQueue<Integer> pq = new PriorityQueue<>(Comparator.reverseOrder()); for (int x : cnt.values()) { pq.offer(x); } int ans = nums.size(); while (pq.size() > 1) { int x = pq.poll(); int y = pq.poll(); x--; y--; if (x > 0) { pq.offer(x); } if (y > 0) { pq.offer(y); } ans -= 2; } return ans; } }
-
class Solution { public: int minLengthAfterRemovals(vector<int>& nums) { unordered_map<int, int> cnt; for (int x : nums) { ++cnt[x]; } priority_queue<int> pq; for (auto& [_, v] : cnt) { pq.push(v); } int ans = nums.size(); while (pq.size() > 1) { int x = pq.top(); pq.pop(); int y = pq.top(); pq.pop(); x--; y--; if (x > 0) { pq.push(x); } if (y > 0) { pq.push(y); } ans -= 2; } return ans; } };
-
class Solution: def minLengthAfterRemovals(self, nums: List[int]) -> int: cnt = Counter(nums) pq = [-x for x in cnt.values()] heapify(pq) ans = len(nums) while len(pq) > 1: x, y = -heappop(pq), -heappop(pq) x -= 1 y -= 1 if x > 0: heappush(pq, -x) if y > 0: heappush(pq, -y) ans -= 2 return ans
-
func minLengthAfterRemovals(nums []int) int { cnt := map[int]int{} for _, x := range nums { cnt[x]++ } h := &hp{} for _, x := range cnt { h.push(x) } ans := len(nums) for h.Len() > 1 { x, y := h.pop(), h.pop() if x > 1 { h.push(x - 1) } if y > 1 { h.push(y - 1) } ans -= 2 } return ans } type hp struct{ sort.IntSlice } func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { a := h.IntSlice v := a[len(a)-1] h.IntSlice = a[:len(a)-1] return v } func (h *hp) push(v int) { heap.Push(h, v) } func (h *hp) pop() int { return heap.Pop(h).(int) }
-
function minLengthAfterRemovals(nums: number[]): number { const cnt: Map<number, number> = new Map(); for (const x of nums) { cnt.set(x, (cnt.get(x) ?? 0) + 1); } const pq = new MaxPriorityQueue(); for (const [_, v] of cnt) { pq.enqueue(v); } let ans = nums.length; while (pq.size() > 1) { let x = pq.dequeue().element; let y = pq.dequeue().element; if (--x > 0) { pq.enqueue(x); } if (--y > 0) { pq.enqueue(y); } ans -= 2; } return ans; }