Welcome to Subscribe On Youtube
2859. Sum of Values at Indices With K Set Bits
Description
You are given a 0-indexed integer array nums
and an integer k
.
Return an integer that denotes the sum of elements in nums
whose corresponding indices have exactly k
set bits in their binary representation.
The set bits in an integer are the 1
's present when it is written in binary.
- For example, the binary representation of
21
is10101
, which has3
set bits.
Example 1:
Input: nums = [5,10,1,5,2], k = 1 Output: 13 Explanation: The binary representation of the indices are: 0 = 0002 1 = 0012 2 = 0102 3 = 0112 4 = 1002 Indices 1, 2, and 4 have k = 1 set bits in their binary representation. Hence, the answer is nums[1] + nums[2] + nums[4] = 13.
Example 2:
Input: nums = [4,3,2,1], k = 2 Output: 1 Explanation: The binary representation of the indices are: 0 = 002 1 = 012 2 = 102 3 = 112 Only index 3 has k = 2 set bits in its binary representation. Hence, the answer is nums[3] = 1.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 105
0 <= k <= 10
Solutions
Solution 1: Simulation
We directly traverse each index $i$, and check whether the number of $1$s in its binary representation is equal to $k$. If it is, we add the corresponding element to the answer $ans$.
After the traversal ends, we return the answer.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
-
class Solution { public: int sumIndicesWithKSetBits(vector<int>& nums, int k) { int ans = 0; for (int i = 0; i < nums.size(); ++i) { if (__builtin_popcount(i) == k) { ans += nums[i]; } } return ans; } };
-
class Solution: def sumIndicesWithKSetBits(self, nums: List[int], k: int) -> int: return sum(x for i, x in enumerate(nums) if i.bit_count() == k)
-
func sumIndicesWithKSetBits(nums []int, k int) (ans int) { for i, x := range nums { if bits.OnesCount(uint(i)) == k { ans += x } } return }
-
function sumIndicesWithKSetBits(nums: number[], k: number): number { let ans = 0; for (let i = 0; i < nums.length; ++i) { if (bitCount(i) === k) { ans += nums[i]; } } return ans; } function bitCount(n: number): number { let count = 0; while (n) { n &= n - 1; count++; } return count; }