Welcome to Subscribe On Youtube
2855. Minimum Right Shifts to Sort the Array
Description
You are given a 0-indexed array nums
of length n
containing distinct positive integers. Return the minimum number of right shifts required to sort nums
and -1
if this is not possible.
A right shift is defined as shifting the element at index i
to index (i + 1) % n
, for all indices.
Example 1:
Input: nums = [3,4,5,1,2] Output: 2 Explanation: After the first right shift, nums = [2,3,4,5,1]. After the second right shift, nums = [1,2,3,4,5]. Now nums is sorted; therefore the answer is 2.
Example 2:
Input: nums = [1,3,5] Output: 0 Explanation: nums is already sorted therefore, the answer is 0.
Example 3:
Input: nums = [2,1,4] Output: -1 Explanation: It's impossible to sort the array using right shifts.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
nums
contains distinct integers.
Solutions
Solution 1: Direct Traversal
First, we use a pointer $i$ to traverse the array $nums$ from left to right, finding a continuous increasing sequence until $i$ reaches the end of the array or $nums[i - 1] > nums[i]$. Next, we use another pointer $k$ to traverse the array $nums$ from $i + 1$, finding a continuous increasing sequence until $k$ reaches the end of the array or $nums[k - 1] > nums[k]$ and $nums[k] > nums[0]$. If $k$ reaches the end of the array, it means the array is already increasing, so we return $n - i$; otherwise, we return $-1$.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int minimumRightShifts(List<Integer> nums) { int n = nums.size(); int i = 1; while (i < n && nums.get(i - 1) < nums.get(i)) { ++i; } int k = i + 1; while (k < n && nums.get(k - 1) < nums.get(k) && nums.get(k) < nums.get(0)) { ++k; } return k < n ? -1 : n - i; } }
-
class Solution { public: int minimumRightShifts(vector<int>& nums) { int n = nums.size(); int i = 1; while (i < n && nums[i - 1] < nums[i]) { ++i; } int k = i + 1; while (k < n && nums[k - 1] < nums[k] && nums[k] < nums[0]) { ++k; } return k < n ? -1 : n - i; } };
-
class Solution: def minimumRightShifts(self, nums: List[int]) -> int: n = len(nums) i = 1 while i < n and nums[i - 1] < nums[i]: i += 1 k = i + 1 while k < n and nums[k - 1] < nums[k] < nums[0]: k += 1 return -1 if k < n else n - i
-
func minimumRightShifts(nums []int) int { n := len(nums) i := 1 for i < n && nums[i-1] < nums[i] { i++ } k := i + 1 for k < n && nums[k-1] < nums[k] && nums[k] < nums[0] { k++ } if k < n { return -1 } return n - i }
-
function minimumRightShifts(nums: number[]): number { const n = nums.length; let i = 1; while (i < n && nums[i - 1] < nums[i]) { ++i; } let k = i + 1; while (k < n && nums[k - 1] < nums[k] && nums[k] < nums[0]) { ++k; } return k < n ? -1 : n - i; }