Welcome to Subscribe On Youtube
2857. Count Pairs of Points With Distance k
Description
You are given a 2D integer array coordinates
and an integer k
, where coordinates[i] = [xi, yi]
are the coordinates of the ith
point in a 2D plane.
We define the distance between two points (x1, y1)
and (x2, y2)
as (x1 XOR x2) + (y1 XOR y2)
where XOR
is the bitwise XOR
operation.
Return the number of pairs (i, j)
such that i < j
and the distance between points i
and j
is equal to k
.
Example 1:
Input: coordinates = [[1,2],[4,2],[1,3],[5,2]], k = 5 Output: 2 Explanation: We can choose the following pairs: - (0,1): Because we have (1 XOR 4) + (2 XOR 2) = 5. - (2,3): Because we have (1 XOR 5) + (3 XOR 2) = 5.
Example 2:
Input: coordinates = [[1,3],[1,3],[1,3],[1,3],[1,3]], k = 0 Output: 10 Explanation: Any two chosen pairs will have a distance of 0. There are 10 ways to choose two pairs.
Constraints:
2 <= coordinates.length <= 50000
0 <= xi, yi <= 106
0 <= k <= 100
Solutions
Solution 1: Hash Table + Enumeration
We can use a hash table $cnt$ to count the occurrence of each point in the array $coordinates$.
Next, we enumerate each point $(x_2, y_2)$ in the array $coordinates$. Since the range of $k$ is $[0, 100]$, and the result of $x_1 \oplus x_2$ or $y_1 \oplus y_2$ is always greater than or equal to $0$, we can enumerate the result $a$ of $x_1 \oplus x_2$ in the range $[0,..k]$. Then, the result of $y_1 \oplus y_2$ is $b = k - a$. In this way, we can calculate the values of $x_1$ and $y_1$, and add the occurrence of $(x_1, y_1)$ to the answer.
The time complexity is $O(n \times k)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $coordinates$.
-
class Solution { public int countPairs(List<List<Integer>> coordinates, int k) { Map<List<Integer>, Integer> cnt = new HashMap<>(); int ans = 0; for (var c : coordinates) { int x2 = c.get(0), y2 = c.get(1); for (int a = 0; a <= k; ++a) { int b = k - a; int x1 = a ^ x2, y1 = b ^ y2; ans += cnt.getOrDefault(List.of(x1, y1), 0); } cnt.merge(c, 1, Integer::sum); } return ans; } }
-
class Solution { public: int countPairs(vector<vector<int>>& coordinates, int k) { unordered_map<long long, int> cnt; auto f = [](int x, int y) { return x * 1000000L + y; }; int ans = 0; for (auto& c : coordinates) { int x2 = c[0], y2 = c[1]; for (int a = 0; a <= k; ++a) { int b = k - a; int x1 = a ^ x2, y1 = b ^ y2; ans += cnt[f(x1, y1)]; } ++cnt[f(x2, y2)]; } return ans; } };
-
class Solution: def countPairs(self, coordinates: List[List[int]], k: int) -> int: cnt = Counter() ans = 0 for x2, y2 in coordinates: for a in range(k + 1): b = k - a x1, y1 = a ^ x2, b ^ y2 ans += cnt[(x1, y1)] cnt[(x2, y2)] += 1 return ans
-
function countPairs(coordinates: number[][], k: number): number { const cnt: Map<number, number> = new Map(); const f = (x: number, y: number): number => x * 1000000 + y; let ans = 0; for (const [x2, y2] of coordinates) { for (let a = 0; a <= k; ++a) { const b = k - a; const [x1, y1] = [a ^ x2, b ^ y2]; ans += cnt.get(f(x1, y1)) ?? 0; } cnt.set(f(x2, y2), (cnt.get(f(x2, y2)) ?? 0) + 1); } return ans; }