Welcome to Subscribe On Youtube
2849. Determine if a Cell Is Reachable at a Given Time
Description
You are given four integers sx
, sy
, fx
, fy
, and a non-negative integer t
.
In an infinite 2D grid, you start at the cell (sx, sy)
. Each second, you must move to any of its adjacent cells.
Return true
if you can reach cell (fx, fy)
after exactly t
seconds, or false
otherwise.
A cell's adjacent cells are the 8 cells around it that share at least one corner with it. You can visit the same cell several times.
Example 1:
Input: sx = 2, sy = 4, fx = 7, fy = 7, t = 6 Output: true Explanation: Starting at cell (2, 4), we can reach cell (7, 7) in exactly 6 seconds by going through the cells depicted in the picture above.
Example 2:
Input: sx = 3, sy = 1, fx = 7, fy = 3, t = 3 Output: false Explanation: Starting at cell (3, 1), it takes at least 4 seconds to reach cell (7, 3) by going through the cells depicted in the picture above. Hence, we cannot reach cell (7, 3) at the third second.
Constraints:
1 <= sx, sy, fx, fy <= 109
0 <= t <= 109
Solutions
-
class Solution { public boolean isReachableAtTime(int sx, int sy, int fx, int fy, int t) { if (sx == fx && sy == fy) { return t != 1; } int dx = Math.abs(sx - fx); int dy = Math.abs(sy - fy); return Math.max(dx, dy) <= t; } }
-
class Solution { public: bool isReachableAtTime(int sx, int sy, int fx, int fy, int t) { if (sx == fx && sy == fy) { return t != 1; } int dx = abs(fx - sx), dy = abs(fy - sy); return max(dx, dy) <= t; } };
-
class Solution: def isReachableAtTime(self, sx: int, sy: int, fx: int, fy: int, t: int) -> bool: if sx == fx and sy == fy: return t != 1 dx = abs(sx - fx) dy = abs(sy - fy) return max(dx, dy) <= t
-
func isReachableAtTime(sx int, sy int, fx int, fy int, t int) bool { if sx == fx && sy == fy { return t != 1 } dx := abs(sx - fx) dy := abs(sy - fy) return max(dx, dy) <= t } func abs(x int) int { if x < 0 { return -x } return x }
-
function isReachableAtTime(sx: number, sy: number, fx: number, fy: number, t: number): boolean { if (sx === fx && sy === fy) { return t !== 1; } const dx = Math.abs(sx - fx); const dy = Math.abs(sy - fy); return Math.max(dx, dy) <= t; }
-
public class Solution { public bool IsReachableAtTime(int sx, int sy, int fx, int fy, int t) { if (sx == fx && sy == fy) return t != 1; return Math.Max(Math.Abs(sx - fx), Math.Abs(sy - fy)) <= t; } }