Welcome to Subscribe On Youtube

2850. Minimum Moves to Spread Stones Over Grid

Description

You are given a 0-indexed 2D integer matrix grid of size 3 * 3, representing the number of stones in each cell. The grid contains exactly 9 stones, and there can be multiple stones in a single cell.

In one move, you can move a single stone from its current cell to any other cell if the two cells share a side.

Return the minimum number of moves required to place one stone in each cell.

 

Example 1:

Input: grid = [[1,1,0],[1,1,1],[1,2,1]]
Output: 3
Explanation: One possible sequence of moves to place one stone in each cell is: 
1- Move one stone from cell (2,1) to cell (2,2).
2- Move one stone from cell (2,2) to cell (1,2).
3- Move one stone from cell (1,2) to cell (0,2).
In total, it takes 3 moves to place one stone in each cell of the grid.
It can be shown that 3 is the minimum number of moves required to place one stone in each cell.

Example 2:

Input: grid = [[1,3,0],[1,0,0],[1,0,3]]
Output: 4
Explanation: One possible sequence of moves to place one stone in each cell is:
1- Move one stone from cell (0,1) to cell (0,2).
2- Move one stone from cell (0,1) to cell (1,1).
3- Move one stone from cell (2,2) to cell (1,2).
4- Move one stone from cell (2,2) to cell (2,1).
In total, it takes 4 moves to place one stone in each cell of the grid.
It can be shown that 4 is the minimum number of moves required to place one stone in each cell.

 

Constraints:

  • grid.length == grid[i].length == 3
  • 0 <= grid[i][j] <= 9
  • Sum of grid is equal to 9.

Solutions

Solution 1: Naive BFS

The problem is essentially finding the shortest path from the initial state to the target state in a state graph, so we can use BFS to solve it. The initial state is grid, and the target state is [[1, 1, 1], [1, 1, 1], [1, 1, 1]]. In each operation, we can move a stone greater than $1$ from a cell to an adjacent cell that does not exceed $1$. If the target state is found, we can return the current layer number, which is the minimum number of moves.

Solution 2: State Compression Dynamic Programming

We can put all the coordinates $(i, j)$ of cells with a value of $0$ into an array $left$. If the value $v$ of a cell is greater than $1$, we put $v-1$ coordinates $(i, j)$ into an array $right$. The problem then becomes that each coordinate $(i, j)$ in $right$ needs to be moved to a coordinate $(x, y)$ in $left$, and we need to find the minimum number of moves.

Let’s denote the length of $left$ as $n$. We can use an $n$-bit binary number to represent whether each coordinate in $left$ is filled by a coordinate in $right$, where $1$ represents being filled, and $0$ represents not being filled. Initially, $f[i] = \infty$, and the rest $f[0]=0$.

Consider $f[i]$, let the number of $1$s in the binary representation of $i$ be $k$. We enumerate $j$ in the range $[0..n)$, if the $j$th bit of $i$ is $1$, then $f[i]$ can be transferred from $f[i \oplus (1 « j)]$, and the cost of the transfer is $cal(left[k-1], right[j])$, where $cal$ represents the Manhattan distance between two coordinates. The final answer is $f[(1 « n) - 1]$.

The time complexity is $O(n \times 2^n)$, and the space complexity is $O(2^n)$. Here, $n$ is the length of $left$, and in this problem, $n \le 9$.

  • class Solution {
        public int minimumMoves(int[][] grid) {
            List<int[]> left = new ArrayList<>();
            List<int[]> right = new ArrayList<>();
            for (int i = 0; i < 3; ++i) {
                for (int j = 0; j < 3; ++j) {
                    if (grid[i][j] == 0) {
                        left.add(new int[] {i, j});
                    } else {
                        for (int k = 1; k < grid[i][j]; ++k) {
                            right.add(new int[] {i, j});
                        }
                    }
                }
            }
            int n = left.size();
            int[] f = new int[1 << n];
            Arrays.fill(f, 1 << 30);
            f[0] = 0;
            for (int i = 1; i < 1 << n; ++i) {
                int k = Integer.bitCount(i);
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 1) {
                        f[i] = Math.min(f[i], f[i ^ (1 << j)] + cal(left.get(k - 1), right.get(j)));
                    }
                }
            }
            return f[(1 << n) - 1];
        }
    
        private int cal(int[] a, int[] b) {
            return Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]);
        }
    }
    
  • class Solution {
    public:
        int minimumMoves(vector<vector<int>>& grid) {
            using pii = pair<int, int>;
            vector<pii> left, right;
            for (int i = 0; i < 3; ++i) {
                for (int j = 0; j < 3; ++j) {
                    if (grid[i][j] == 0) {
                        left.emplace_back(i, j);
                    } else {
                        for (int k = 1; k < grid[i][j]; ++k) {
                            right.emplace_back(i, j);
                        }
                    }
                }
            }
            auto cal = [](pii a, pii b) {
                return abs(a.first - b.first) + abs(a.second - b.second);
            };
            int n = left.size();
            int f[1 << n];
            memset(f, 0x3f, sizeof(f));
            f[0] = 0;
            for (int i = 1; i < 1 << n; ++i) {
                int k = __builtin_popcount(i);
                for (int j = 0; j < n; ++j) {
                    if (i >> j & 1) {
                        f[i] = min(f[i], f[i ^ (1 << j)] + cal(left[k - 1], right[j]));
                    }
                }
            }
            return f[(1 << n) - 1];
        }
    };
    
  • class Solution:
        def minimumMoves(self, grid: List[List[int]]) -> int:
            def cal(a: tuple, b: tuple) -> int:
                return abs(a[0] - b[0]) + abs(a[1] - b[1])
    
            left, right = [], []
            for i in range(3):
                for j in range(3):
                    if grid[i][j] == 0:
                        left.append((i, j))
                    else:
                        for _ in range(grid[i][j] - 1):
                            right.append((i, j))
    
            n = len(left)
            f = [inf] * (1 << n)
            f[0] = 0
            for i in range(1, 1 << n):
                k = i.bit_count()
                for j in range(n):
                    if i >> j & 1:
                        f[i] = min(f[i], f[i ^ (1 << j)] + cal(left[k - 1], right[j]))
            return f[-1]
    
    
  • func minimumMoves(grid [][]int) int {
    	left := [][2]int{}
    	right := [][2]int{}
    	for i := 0; i < 3; i++ {
    		for j := 0; j < 3; j++ {
    			if grid[i][j] == 0 {
    				left = append(left, [2]int{i, j})
    			} else {
    				for k := 1; k < grid[i][j]; k++ {
    					right = append(right, [2]int{i, j})
    				}
    			}
    		}
    	}
    	cal := func(a, b [2]int) int {
    		return abs(a[0]-b[0]) + abs(a[1]-b[1])
    	}
    	n := len(left)
    	f := make([]int, 1<<n)
    	f[0] = 0
    	for i := 1; i < 1<<n; i++ {
    		f[i] = 1 << 30
    		k := bits.OnesCount(uint(i))
    		for j := 0; j < n; j++ {
    			if i>>j&1 == 1 {
    				f[i] = min(f[i], f[i^(1<<j)]+cal(left[k-1], right[j]))
    			}
    		}
    	}
    	return f[(1<<n)-1]
    }
    
    func min(a, b int) int {
    	if a < b {
    		return a
    	}
    	return b
    }
    
    func abs(x int) int {
    	if x < 0 {
    		return -x
    	}
    	return x
    }
    
  • function minimumMoves(grid: number[][]): number {
        const left: number[][] = [];
        const right: number[][] = [];
        for (let i = 0; i < 3; ++i) {
            for (let j = 0; j < 3; ++j) {
                if (grid[i][j] === 0) {
                    left.push([i, j]);
                } else {
                    for (let k = 1; k < grid[i][j]; ++k) {
                        right.push([i, j]);
                    }
                }
            }
        }
        const cal = (a: number[], b: number[]) => {
            return Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]);
        };
        const n = left.length;
        const f: number[] = Array(1 << n).fill(1 << 30);
        f[0] = 0;
        for (let i = 0; i < 1 << n; ++i) {
            let k = 0;
            for (let j = 0; j < n; ++j) {
                if ((i >> j) & 1) {
                    ++k;
                }
            }
            for (let j = 0; j < n; ++j) {
                if ((i >> j) & 1) {
                    f[i] = Math.min(f[i], f[i ^ (1 << j)] + cal(left[k - 1], right[j]));
                }
            }
        }
        return f[(1 << n) - 1];
    }
    
    

All Problems

All Solutions