Welcome to Subscribe On Youtube
2843. Count Symmetric Integers
Description
You are given two positive integers low
and high
.
An integer x
consisting of 2 * n
digits is symmetric if the sum of the first n
digits of x
is equal to the sum of the last n
digits of x
. Numbers with an odd number of digits are never symmetric.
Return the number of symmetric integers in the range [low, high]
.
Example 1:
Input: low = 1, high = 100 Output: 9 Explanation: There are 9 symmetric integers between 1 and 100: 11, 22, 33, 44, 55, 66, 77, 88, and 99.
Example 2:
Input: low = 1200, high = 1230 Output: 4 Explanation: There are 4 symmetric integers between 1200 and 1230: 1203, 1212, 1221, and 1230.
Constraints:
1 <= low <= high <= 104
Solutions
Solution 1: Enumeration
We enumerate each integer $x$ in the range $[low, high]$, and check whether it is a palindromic number. If it is, then the answer $ans$ is increased by $1$.
The time complexity is $O(n \times \log m)$, and the space complexity is $O(\log m)$. Here, $n$ is the number of integers in the range $[low, high]$, and $m$ is the maximum integer given in the problem.
-
class Solution { public int countSymmetricIntegers(int low, int high) { int ans = 0; for (int x = low; x <= high; ++x) { ans += f(x); } return ans; } private int f(int x) { String s = "" + x; int n = s.length(); if (n % 2 == 1) { return 0; } int a = 0, b = 0; for (int i = 0; i < n / 2; ++i) { a += s.charAt(i) - '0'; } for (int i = n / 2; i < n; ++i) { b += s.charAt(i) - '0'; } return a == b ? 1 : 0; } }
-
class Solution { public: int countSymmetricIntegers(int low, int high) { int ans = 0; auto f = [](int x) { string s = to_string(x); int n = s.size(); if (n & 1) { return 0; } int a = 0, b = 0; for (int i = 0; i < n / 2; ++i) { a += s[i] - '0'; b += s[n / 2 + i] - '0'; } return a == b ? 1 : 0; }; for (int x = low; x <= high; ++x) { ans += f(x); } return ans; } };
-
class Solution: def countSymmetricIntegers(self, low: int, high: int) -> int: def f(x: int) -> bool: s = str(x) if len(s) & 1: return False n = len(s) // 2 return sum(map(int, s[:n])) == sum(map(int, s[n:])) return sum(f(x) for x in range(low, high + 1))
-
func countSymmetricIntegers(low int, high int) (ans int) { f := func(x int) int { s := strconv.Itoa(x) n := len(s) if n&1 == 1 { return 0 } a, b := 0, 0 for i := 0; i < n/2; i++ { a += int(s[i] - '0') b += int(s[n/2+i] - '0') } if a == b { return 1 } return 0 } for x := low; x <= high; x++ { ans += f(x) } return }
-
function countSymmetricIntegers(low: number, high: number): number { let ans = 0; const f = (x: number): number => { const s = x.toString(); const n = s.length; if (n & 1) { return 0; } let a = 0; let b = 0; for (let i = 0; i < n >> 1; ++i) { a += Number(s[i]); b += Number(s[(n >> 1) + i]); } return a === b ? 1 : 0; }; for (let x = low; x <= high; ++x) { ans += f(x); } return ans; }