Welcome to Subscribe On Youtube
2844. Minimum Operations to Make a Special Number
Description
You are given a 0-indexed string num
representing a non-negative integer.
In one operation, you can pick any digit of num
and delete it. Note that if you delete all the digits of num
, num
becomes 0
.
Return the minimum number of operations required to make num
special.
An integer x
is considered special if it is divisible by 25
.
Example 1:
Input: num = "2245047" Output: 2 Explanation: Delete digits num[5] and num[6]. The resulting number is "22450" which is special since it is divisible by 25. It can be shown that 2 is the minimum number of operations required to get a special number.
Example 2:
Input: num = "2908305" Output: 3 Explanation: Delete digits num[3], num[4], and num[6]. The resulting number is "2900" which is special since it is divisible by 25. It can be shown that 3 is the minimum number of operations required to get a special number.
Example 3:
Input: num = "10" Output: 1 Explanation: Delete digit num[0]. The resulting number is "0" which is special since it is divisible by 25. It can be shown that 1 is the minimum number of operations required to get a special number.
Constraints:
1 <= num.length <= 100
num
only consists of digits'0'
through'9'
.num
does not contain any leading zeros.
Solutions
Solution 1: Memoization Search
We notice that an integer $x$ can be divisible by $25$, i.e., $x \bmod 25 = 0$. Therefore, we can design a function $dfs(i, k)$, which represents the minimum number of digits to be deleted to make the number a special number, starting from the $i$th digit of the string $num$, and the current number modulo $25$ is $k$. The answer is $dfs(0, 0)$.
The execution logic of the function $dfs(i, k)$ is as follows:
- If $i = n$, i.e., all digits of the string $num$ have been processed, then if $k = 0$, the current number can be divisible by $25$, return $0$, otherwise return $n$;
- Otherwise, the $i$th digit can be deleted, in this case one digit needs to be deleted, i.e., $dfs(i + 1, k) + 1$; if the $i$th digit is not deleted, then the value of $k$ becomes $(k \times 10 + \textit{num}[i]) \bmod 25$, i.e., $dfs(i + 1, (k \times 10 + \textit{num}[i]) \bmod 25)$. Take the minimum of these two.
To prevent repeated calculations, we can use memoization to optimize the time complexity.
The time complexity is $O(n \times 25)$, and the space complexity is $O(n \times 25)$. Here, $n$ is the length of the string $num$.
-
class Solution { private Integer[][] f; private String num; private int n; public int minimumOperations(String num) { n = num.length(); this.num = num; f = new Integer[n][25]; return dfs(0, 0); } private int dfs(int i, int k) { if (i == n) { return k == 0 ? 0 : n; } if (f[i][k] != null) { return f[i][k]; } f[i][k] = dfs(i + 1, k) + 1; f[i][k] = Math.min(f[i][k], dfs(i + 1, (k * 10 + num.charAt(i) - '0') % 25)); return f[i][k]; } }
-
class Solution { public: int minimumOperations(string num) { int n = num.size(); int f[n][25]; memset(f, -1, sizeof(f)); function<int(int, int)> dfs = [&](int i, int k) -> int { if (i == n) { return k == 0 ? 0 : n; } if (f[i][k] != -1) { return f[i][k]; } f[i][k] = dfs(i + 1, k) + 1; f[i][k] = min(f[i][k], dfs(i + 1, (k * 10 + num[i] - '0') % 25)); return f[i][k]; }; return dfs(0, 0); } };
-
class Solution: def minimumOperations(self, num: str) -> int: @cache def dfs(i: int, k: int) -> int: if i == n: return 0 if k == 0 else n ans = dfs(i + 1, k) + 1 ans = min(ans, dfs(i + 1, (k * 10 + int(num[i])) % 25)) return ans n = len(num) return dfs(0, 0)
-
func minimumOperations(num string) int { n := len(num) f := make([][25]int, n) for i := range f { for j := range f[i] { f[i][j] = -1 } } var dfs func(i, k int) int dfs = func(i, k int) int { if i == n { if k == 0 { return 0 } return n } if f[i][k] != -1 { return f[i][k] } f[i][k] = dfs(i+1, k) + 1 f[i][k] = min(f[i][k], dfs(i+1, (k*10+int(num[i]-'0'))%25)) return f[i][k] } return dfs(0, 0) } func min(a, b int) int { if a < b { return a } return b }
-
function minimumOperations(num: string): number { const n = num.length; const f: number[][] = Array.from({ length: n }, () => Array.from({ length: 25 }, () => -1)); const dfs = (i: number, k: number): number => { if (i === n) { return k === 0 ? 0 : n; } if (f[i][k] !== -1) { return f[i][k]; } f[i][k] = dfs(i + 1, k) + 1; f[i][k] = Math.min(f[i][k], dfs(i + 1, (k * 10 + Number(num[i])) % 25)); return f[i][k]; }; return dfs(0, 0); }