Welcome to Subscribe On Youtube
2841. Maximum Sum of Almost Unique Subarray
Description
You are given an integer array nums
and two positive integers m
and k
.
Return the maximum sum out of all almost unique subarrays of length k
of nums
. If no such subarray exists, return 0
.
A subarray of nums
is almost unique if it contains at least m
distinct elements.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [2,6,7,3,1,7], m = 3, k = 4
Output: 18
Explanation: There are 3 almost unique subarrays of size k = 4
. These subarrays are [2, 6, 7, 3], [6, 7, 3, 1], and [7, 3, 1, 7]. Among these subarrays, the one with the maximum sum is [2, 6, 7, 3] which has a sum of 18.
Example 2:
Input: nums = [5,9,9,2,4,5,4], m = 1, k = 3 Output: 23 Explanation: There are 5 almost unique subarrays of size k. These subarrays are [5, 9, 9], [9, 9, 2], [9, 2, 4], [2, 4, 5], and [4, 5, 4]. Among these subarrays, the one with the maximum sum is [5, 9, 9] which has a sum of 23.
Example 3:
Input: nums = [1,2,1,2,1,2,1], m = 3, k = 3 Output: 0 Explanation: There are no subarrays of sizek = 3
that contain at leastm = 3
distinct elements in the given array [1,2,1,2,1,2,1]. Therefore, no almost unique subarrays exist, and the maximum sum is 0.
Constraints:
1 <= nums.length <= 2 * 104
1 <= m <= k <= nums.length
1 <= nums[i] <= 109
Solutions
Solution 1: Sliding Window + Hash Table
We can traverse the array $nums$, maintain a window of size $k$, use a hash table $cnt$ to count the occurrence of each element in the window, and use a variable $s$ to sum all elements in the window. If the number of different elements in $cnt$ is greater than or equal to $m$, then we update the answer $ans = \max(ans, s)$.
After the traversal ends, return the answer.
The time complexity is $O(n)$, and the space complexity is $O(k)$. Here, $n$ is the length of the array.
-
class Solution { public long maxSum(List<Integer> nums, int m, int k) { Map<Integer, Integer> cnt = new HashMap<>(); int n = nums.size(); long s = 0; for (int i = 0; i < k; ++i) { cnt.merge(nums.get(i), 1, Integer::sum); s += nums.get(i); } long ans = 0; if (cnt.size() >= m) { ans = s; } for (int i = k; i < n; ++i) { cnt.merge(nums.get(i), 1, Integer::sum); if (cnt.merge(nums.get(i - k), -1, Integer::sum) == 0) { cnt.remove(nums.get(i - k)); } s += nums.get(i) - nums.get(i - k); if (cnt.size() >= m) { ans = Math.max(ans, s); } } return ans; } }
-
class Solution { public: long long maxSum(vector<int>& nums, int m, int k) { unordered_map<int, int> cnt; long long s = 0; int n = nums.size(); for (int i = 0; i < k; ++i) { cnt[nums[i]]++; s += nums[i]; } long long ans = cnt.size() >= m ? s : 0; for (int i = k; i < n; ++i) { cnt[nums[i]]++; if (--cnt[nums[i - k]] == 0) { cnt.erase(nums[i - k]); } s += nums[i] - nums[i - k]; if (cnt.size() >= m) { ans = max(ans, s); } } return ans; } };
-
class Solution: def maxSum(self, nums: List[int], m: int, k: int) -> int: cnt = Counter(nums[:k]) s = sum(nums[:k]) ans = 0 if len(cnt) >= m: ans = s for i in range(k, len(nums)): cnt[nums[i]] += 1 cnt[nums[i - k]] -= 1 s += nums[i] - nums[i - k] if cnt[nums[i - k]] == 0: cnt.pop(nums[i - k]) if len(cnt) >= m: ans = max(ans, s) return ans
-
func maxSum(nums []int, m int, k int) int64 { cnt := map[int]int{} var s int64 for _, x := range nums[:k] { cnt[x]++ s += int64(x) } var ans int64 if len(cnt) >= m { ans = s } for i := k; i < len(nums); i++ { cnt[nums[i]]++ cnt[nums[i-k]]-- if cnt[nums[i-k]] == 0 { delete(cnt, nums[i-k]) } s += int64(nums[i]) - int64(nums[i-k]) if len(cnt) >= m { ans = max(ans, s) } } return ans }
-
function maxSum(nums: number[], m: number, k: number): number { const n = nums.length; const cnt: Map<number, number> = new Map(); let s = 0; for (let i = 0; i < k; ++i) { cnt.set(nums[i], (cnt.get(nums[i]) || 0) + 1); s += nums[i]; } let ans = cnt.size >= m ? s : 0; for (let i = k; i < n; ++i) { cnt.set(nums[i], (cnt.get(nums[i]) || 0) + 1); cnt.set(nums[i - k], cnt.get(nums[i - k])! - 1); if (cnt.get(nums[i - k]) === 0) { cnt.delete(nums[i - k]); } s += nums[i] - nums[i - k]; if (cnt.size >= m) { ans = Math.max(ans, s); } } return ans; }
-
public class Solution { public long MaxSum(IList<int> nums, int m, int k) { Dictionary<int, int> cnt = new Dictionary<int, int>(); int n = nums.Count; long s = 0; for (int i = 0; i < k; ++i) { if (!cnt.ContainsKey(nums[i])) { cnt[nums[i]] = 1; } else { cnt[nums[i]]++; } s += nums[i]; } long ans = cnt.Count >= m ? s : 0; for (int i = k; i < n; ++i) { if (!cnt.ContainsKey(nums[i])) { cnt[nums[i]] = 1; } else { cnt[nums[i]]++; } if (cnt.ContainsKey(nums[i - k])) { cnt[nums[i - k]]--; if (cnt[nums[i - k]] == 0) { cnt.Remove(nums[i - k]); } } s += nums[i] - nums[i - k]; if (cnt.Count >= m) { ans = Math.Max(ans, s); } } return ans; } }