Welcome to Subscribe On Youtube

2799. Count Complete Subarrays in an Array

Description

You are given an array nums consisting of positive integers.

We call a subarray of an array complete if the following condition is satisfied:

  • The number of distinct elements in the subarray is equal to the number of distinct elements in the whole array.

Return the number of complete subarrays.

A subarray is a contiguous non-empty part of an array.

 

Example 1:

Input: nums = [1,3,1,2,2]
Output: 4
Explanation: The complete subarrays are the following: [1,3,1,2], [1,3,1,2,2], [3,1,2] and [3,1,2,2].

Example 2:

Input: nums = [5,5,5,5]
Output: 10
Explanation: The array consists only of the integer 5, so any subarray is complete. The number of subarrays that we can choose is 10.

 

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 2000

Solutions

  • class Solution {
        public int countCompleteSubarrays(int[] nums) {
            Set<Integer> s = new HashSet<>();
            for (int x : nums) {
                s.add(x);
            }
            int cnt = s.size();
            int ans = 0, n = nums.length;
            for (int i = 0; i < n; ++i) {
                s.clear();
                for (int j = i; j < n; ++j) {
                    s.add(nums[j]);
                    if (s.size() == cnt) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int countCompleteSubarrays(vector<int>& nums) {
            unordered_set<int> s(nums.begin(), nums.end());
            int cnt = s.size();
            int ans = 0, n = nums.size();
            for (int i = 0; i < n; ++i) {
                s.clear();
                for (int j = i; j < n; ++j) {
                    s.insert(nums[j]);
                    if (s.size() == cnt) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def countCompleteSubarrays(self, nums: List[int]) -> int:
            cnt = len(set(nums))
            ans, n = 0, len(nums)
            for i in range(n):
                s = set()
                for x in nums[i:]:
                    s.add(x)
                    if len(s) == cnt:
                        ans += 1
            return ans
    
    
  • func countCompleteSubarrays(nums []int) (ans int) {
    	s := map[int]bool{}
    	for _, x := range nums {
    		s[x] = true
    	}
    	cnt := len(s)
    	for i := range nums {
    		s = map[int]bool{}
    		for _, x := range nums[i:] {
    			s[x] = true
    			if len(s) == cnt {
    				ans++
    			}
    		}
    	}
    	return
    }
    
  • function countCompleteSubarrays(nums: number[]): number {
        const s: Set<number> = new Set(nums);
        const cnt = s.size;
        const n = nums.length;
        let ans = 0;
        for (let i = 0; i < n; ++i) {
            s.clear();
            for (let j = i; j < n; ++j) {
                s.add(nums[j]);
                if (s.size === cnt) {
                    ++ans;
                }
            }
        }
        return ans;
    }
    
    
  • use std::collections::HashSet;
    impl Solution {
        pub fn count_complete_subarrays(nums: Vec<i32>) -> i32 {
            let mut set: HashSet<&i32> = nums.iter().collect();
            let n = nums.len();
            let m = set.len();
            let mut ans = 0;
            for i in 0..n {
                set.clear();
                for j in i..n {
                    set.insert(&nums[j]);
                    if set.len() == m {
                        ans += n - j;
                        break;
                    }
                }
            }
            ans as i32
        }
    }
    
    

All Problems

All Solutions