Welcome to Subscribe On Youtube

2787. Ways to Express an Integer as Sum of Powers

Description

Given two positive integers n and x.

Return the number of ways n can be expressed as the sum of the xth power of unique positive integers, in other words, the number of sets of unique integers [n1, n2, ..., nk] where n = n1x + n2x + ... + nkx.

Since the result can be very large, return it modulo 109 + 7.

For example, if n = 160 and x = 3, one way to express n is n = 23 + 33 + 53.

 

Example 1:

Input: n = 10, x = 2
Output: 1
Explanation: We can express n as the following: n = 32 + 12 = 10.
It can be shown that it is the only way to express 10 as the sum of the 2nd power of unique integers.

Example 2:

Input: n = 4, x = 1
Output: 2
Explanation: We can express n in the following ways:
- n = 41 = 4.
- n = 31 + 11 = 4.

 

Constraints:

  • 1 <= n <= 300
  • 1 <= x <= 5

Solutions

  • class Solution {
        public int numberOfWays(int n, int x) {
            final int mod = (int) 1e9 + 7;
            int[][] f = new int[n + 1][n + 1];
            f[0][0] = 1;
            for (int i = 1; i <= n; ++i) {
                long k = (long) Math.pow(i, x);
                for (int j = 0; j <= n; ++j) {
                    f[i][j] = f[i - 1][j];
                    if (k <= j) {
                        f[i][j] = (f[i][j] + f[i - 1][j - (int) k]) % mod;
                    }
                }
            }
            return f[n][n];
        }
    }
    
  • class Solution {
    public:
        int numberOfWays(int n, int x) {
            const int mod = 1e9 + 7;
            int f[n + 1][n + 1];
            memset(f, 0, sizeof(f));
            f[0][0] = 1;
            for (int i = 1; i <= n; ++i) {
                long long k = (long long) pow(i, x);
                for (int j = 0; j <= n; ++j) {
                    f[i][j] = f[i - 1][j];
                    if (k <= j) {
                        f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
                    }
                }
            }
            return f[n][n];
        }
    };
    
  • class Solution:
        def numberOfWays(self, n: int, x: int) -> int:
            mod = 10**9 + 7
            f = [[0] * (n + 1) for _ in range(n + 1)]
            f[0][0] = 1
            for i in range(1, n + 1):
                k = pow(i, x)
                for j in range(n + 1):
                    f[i][j] = f[i - 1][j]
                    if k <= j:
                        f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod
            return f[n][n]
    
    
  • func numberOfWays(n int, x int) int {
    	const mod int = 1e9 + 7
    	f := make([][]int, n+1)
    	for i := range f {
    		f[i] = make([]int, n+1)
    	}
    	f[0][0] = 1
    	for i := 1; i <= n; i++ {
    		k := int(math.Pow(float64(i), float64(x)))
    		for j := 0; j <= n; j++ {
    			f[i][j] = f[i-1][j]
    			if k <= j {
    				f[i][j] = (f[i][j] + f[i-1][j-k]) % mod
    			}
    		}
    	}
    	return f[n][n]
    }
    
  • function numberOfWays(n: number, x: number): number {
        const mod = 10 ** 9 + 7;
        const f: number[][] = Array(n + 1)
            .fill(0)
            .map(() => Array(n + 1).fill(0));
        f[0][0] = 1;
        for (let i = 1; i <= n; ++i) {
            const k = Math.pow(i, x);
            for (let j = 0; j <= n; ++j) {
                f[i][j] = f[i - 1][j];
                if (k <= j) {
                    f[i][j] = (f[i][j] + f[i - 1][j - k]) % mod;
                }
            }
        }
        return f[n][n];
    }
    
    

All Problems

All Solutions