Welcome to Subscribe On Youtube
2652. Sum Multiples
Description
Given a positive integer n
, find the sum of all integers in the range [1, n]
inclusive that are divisible by 3
, 5
, or 7
.
Return an integer denoting the sum of all numbers in the given range satisfying the constraint.
Example 1:
Input: n = 7 Output: 21 Explanation: Numbers in the range[1, 7]
that are divisible by3
,5,
or7
are3, 5, 6, 7
. The sum of these numbers is21
.
Example 2:
Input: n = 10 Output: 40 Explanation: Numbers in the range[1, 10] that are
divisible by3
,5,
or7
are3, 5, 6, 7, 9, 10
. The sum of these numbers is 40.
Example 3:
Input: n = 9 Output: 30 Explanation: Numbers in the range[1, 9]
that are divisible by3
,5
, or7
are3, 5, 6, 7, 9
. The sum of these numbers is30
.
Constraints:
1 <= n <= 103
Solutions
Solution 1: Enumeration
We directly enumerate every number $x$ in $[1,..n]$, and if $x$ is divisible by $3$, $5$, and $7$, we add $x$ to the answer.
After the enumeration, we return the answer.
The time complexity is $O(n)$, where $n$ is the given integer. The space complexity is $O(1)$.
Solution 2: Mathematics (Inclusion-Exclusion Principle)
We define a function $f(x)$ to represent the sum of numbers in $[1,..n]$ that are divisible by $x$. There are $m = \left\lfloor \frac{n}{x} \right\rfloor$ numbers that are divisible by $x$, which are $x$, $2x$, $3x$, $\cdots$, $mx$, forming an arithmetic sequence with the first term $x$, the last term $mx$, and the number of terms $m$. Therefore, $f(x) = \frac{(x + mx) \times m}{2}$.
According to the inclusion-exclusion principle, we can obtain the answer as:
\[f(3) + f(5) + f(7) - f(3 \times 5) - f(3 \times 7) - f(5 \times 7) + f(3 \times 5 \times 7)\]The time complexity is $O(1)$, and the space complexity is $O(1)$.
-
class Solution { public int sumOfMultiples(int n) { int ans = 0; for (int x = 1; x <= n; ++x) { if (x % 3 == 0 || x % 5 == 0 || x % 7 == 0) { ans += x; } } return ans; } }
-
class Solution { public: int sumOfMultiples(int n) { int ans = 0; for (int x = 1; x <= n; ++x) { if (x % 3 == 0 || x % 5 == 0 || x % 7 == 0) { ans += x; } } return ans; } };
-
class Solution: def sumOfMultiples(self, n: int) -> int: return sum(x for x in range(1, n + 1) if x % 3 == 0 or x % 5 == 0 or x % 7 == 0)
-
func sumOfMultiples(n int) (ans int) { for x := 1; x <= n; x++ { if x%3 == 0 || x%5 == 0 || x%7 == 0 { ans += x } } return }
-
function sumOfMultiples(n: number): number { let ans = 0; for (let x = 1; x <= n; ++x) { if (x % 3 === 0 || x % 5 === 0 || x % 7 === 0) { ans += x; } } return ans; }
-
impl Solution { pub fn sum_of_multiples(n: i32) -> i32 { let mut ans = 0; for i in 1..=n { if i % 3 == 0 || i % 5 == 0 || i % 7 == 0 { ans += i; } } ans } }