Welcome to Subscribe On Youtube
2765. Longest Alternating Subarray
Description
You are given a 0-indexed integer array nums
. A subarray s
of length m
is called alternating if:
m
is greater than1
.s1 = s0 + 1
.- The 0-indexed subarray
s
looks like[s0, s1, s0, s1,...,s(m-1) % 2]
. In other words,s1 - s0 = 1
,s2 - s1 = -1
,s3 - s2 = 1
,s4 - s3 = -1
, and so on up tos[m - 1] - s[m - 2] = (-1)m
.
Return the maximum length of all alternating subarrays present in nums
or -1
if no such subarray exists.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [2,3,4,3,4] Output: 4 Explanation: The alternating subarrays are [3,4], [3,4,3], and [3,4,3,4]. The longest of these is [3,4,3,4], which is of length 4.
Example 2:
Input: nums = [4,5,6] Output: 2 Explanation: [4,5] and [5,6] are the only two alternating subarrays. They are both of length 2.
Constraints:
2 <= nums.length <= 100
1 <= nums[i] <= 104
Solutions
Solution 1: Enumeration
We can enumerate the left endpoint $i$ of the subarray, and for each $i$, we need to find the longest subarray that satisfies the condition. We can start traversing to the right from $i$, and each time we encounter adjacent elements whose difference does not satisfy the alternating condition, we find a subarray that satisfies the condition. We can use a variable $k$ to record whether the difference of the current element should be $1$ or $-1$. If the difference of the current element should be $-k$, then we take the opposite of $k$. When we find a subarray $nums[i..j]$ that satisfies the condition, we update the answer to $\max(ans, j - i + 1)$.
The time complexity is $O(n^2)$, where $n$ is the length of the array. We need to enumerate the left endpoint $i$ of the subarray, and for each $i$, we need $O(n)$ time to find the longest subarray that satisfies the condition. The space complexity is $O(1)$.
-
class Solution { public int alternatingSubarray(int[] nums) { int ans = -1, n = nums.length; for (int i = 0; i < n; ++i) { int k = 1; int j = i; for (; j + 1 < n && nums[j + 1] - nums[j] == k; ++j) { k *= -1; } if (j - i + 1 > 1) { ans = Math.max(ans, j - i + 1); } } return ans; } }
-
class Solution { public: int alternatingSubarray(vector<int>& nums) { int ans = -1, n = nums.size(); for (int i = 0; i < n; ++i) { int k = 1; int j = i; for (; j + 1 < n && nums[j + 1] - nums[j] == k; ++j) { k *= -1; } if (j - i + 1 > 1) { ans = max(ans, j - i + 1); } } return ans; } };
-
class Solution: def alternatingSubarray(self, nums: List[int]) -> int: ans, n = -1, len(nums) for i in range(n): k = 1 j = i while j + 1 < n and nums[j + 1] - nums[j] == k: j += 1 k *= -1 if j - i + 1 > 1: ans = max(ans, j - i + 1) return ans
-
func alternatingSubarray(nums []int) int { ans, n := -1, len(nums) for i := range nums { k := 1 j := i for ; j+1 < n && nums[j+1]-nums[j] == k; j++ { k *= -1 } if t := j - i + 1; t > 1 && ans < t { ans = t } } return ans }
-
function alternatingSubarray(nums: number[]): number { let ans = -1; const n = nums.length; for (let i = 0; i < n; ++i) { let k = 1; let j = i; for (; j + 1 < n && nums[j + 1] - nums[j] === k; ++j) { k *= -1; } if (j - i + 1 > 1) { ans = Math.max(ans, j - i + 1); } } return ans; }