Welcome to Subscribe On Youtube

2761. Prime Pairs With Target Sum

Description

You are given an integer n. We say that two integers x and y form a prime number pair if:

  • 1 <= x <= y <= n
  • x + y == n
  • x and y are prime numbers

Return the 2D sorted list of prime number pairs [xi, yi]. The list should be sorted in increasing order of xi. If there are no prime number pairs at all, return an empty array.

Note: A prime number is a natural number greater than 1 with only two factors, itself and 1.

 

Example 1:

Input: n = 10
Output: [[3,7],[5,5]]
Explanation: In this example, there are two prime pairs that satisfy the criteria. 
These pairs are [3,7] and [5,5], and we return them in the sorted order as described in the problem statement.

Example 2:

Input: n = 2
Output: []
Explanation: We can show that there is no prime number pair that gives a sum of 2, so we return an empty array. 

 

Constraints:

  • 1 <= n <= 106

Solutions

Solution 1: Preprocessing + Enumeration

First, we pre-process all the prime numbers within the range of $n$, and record them in the array $primes$, where $primes[i]$ is true if $i$ is a prime number.

Next, we enumerate $x$ in the range of $[2, \frac{n}{2}]$. In this case, $y = n - x$. If both $primes[x]$ and $primes[y]$ are true, then $(x, y)$ is a pair of prime numbers, which is added to the answer.

After the enumeration is complete, we return the answer.

The time complexity is $O(n \log \log n)$ and the space complexity is $O(n)$, where $n$ is the number given in the problem.

  • class Solution {
        public List<List<Integer>> findPrimePairs(int n) {
            boolean[] primes = new boolean[n];
            Arrays.fill(primes, true);
            for (int i = 2; i < n; ++i) {
                if (primes[i]) {
                    for (int j = i + i; j < n; j += i) {
                        primes[j] = false;
                    }
                }
            }
            List<List<Integer>> ans = new ArrayList<>();
            for (int x = 2; x <= n / 2; ++x) {
                int y = n - x;
                if (primes[x] && primes[y]) {
                    ans.add(List.of(x, y));
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        vector<vector<int>> findPrimePairs(int n) {
            bool primes[n];
            memset(primes, true, sizeof(primes));
            for (int i = 2; i < n; ++i) {
                if (primes[i]) {
                    for (int j = i + i; j < n; j += i) {
                        primes[j] = false;
                    }
                }
            }
            vector<vector<int>> ans;
            for (int x = 2; x <= n / 2; ++x) {
                int y = n - x;
                if (primes[x] && primes[y]) {
                    ans.push_back({x, y});
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def findPrimePairs(self, n: int) -> List[List[int]]:
            primes = [True] * n
            for i in range(2, n):
                if primes[i]:
                    for j in range(i + i, n, i):
                        primes[j] = False
            ans = []
            for x in range(2, n // 2 + 1):
                y = n - x
                if primes[x] and primes[y]:
                    ans.append([x, y])
            return ans
    
    
  • func findPrimePairs(n int) (ans [][]int) {
    	primes := make([]bool, n)
    	for i := range primes {
    		primes[i] = true
    	}
    	for i := 2; i < n; i++ {
    		if primes[i] {
    			for j := i + i; j < n; j += i {
    				primes[j] = false
    			}
    		}
    	}
    	for x := 2; x <= n/2; x++ {
    		y := n - x
    		if primes[x] && primes[y] {
    			ans = append(ans, []int{x, y})
    		}
    	}
    	return
    }
    
  • function findPrimePairs(n: number): number[][] {
        const primes: boolean[] = new Array(n).fill(true);
        for (let i = 2; i < n; ++i) {
            if (primes[i]) {
                for (let j = i + i; j < n; j += i) {
                    primes[j] = false;
                }
            }
        }
        const ans: number[][] = [];
        for (let x = 2; x <= n / 2; ++x) {
            const y = n - x;
            if (primes[x] && primes[y]) {
                ans.push([x, y]);
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions