Welcome to Subscribe On Youtube
2748. Number of Beautiful Pairs
Description
You are given a 0-indexed integer array nums
. A pair of indices i
, j
where 0 <= i < j < nums.length
is called beautiful if the first digit of nums[i]
and the last digit of nums[j]
are coprime.
Return the total number of beautiful pairs in nums
.
Two integers x
and y
are coprime if there is no integer greater than 1 that divides both of them. In other words, x
and y
are coprime if gcd(x, y) == 1
, where gcd(x, y)
is the greatest common divisor of x
and y
.
Example 1:
Input: nums = [2,5,1,4] Output: 5 Explanation: There are 5 beautiful pairs in nums: When i = 0 and j = 1: the first digit of nums[0] is 2, and the last digit of nums[1] is 5. We can confirm that 2 and 5 are coprime, since gcd(2,5) == 1. When i = 0 and j = 2: the first digit of nums[0] is 2, and the last digit of nums[2] is 1. Indeed, gcd(2,1) == 1. When i = 1 and j = 2: the first digit of nums[1] is 5, and the last digit of nums[2] is 1. Indeed, gcd(5,1) == 1. When i = 1 and j = 3: the first digit of nums[1] is 5, and the last digit of nums[3] is 4. Indeed, gcd(5,4) == 1. When i = 2 and j = 3: the first digit of nums[2] is 1, and the last digit of nums[3] is 4. Indeed, gcd(1,4) == 1. Thus, we return 5.
Example 2:
Input: nums = [11,21,12] Output: 2 Explanation: There are 2 beautiful pairs: When i = 0 and j = 1: the first digit of nums[0] is 1, and the last digit of nums[1] is 1. Indeed, gcd(1,1) == 1. When i = 0 and j = 2: the first digit of nums[0] is 1, and the last digit of nums[2] is 2. Indeed, gcd(1,2) == 1. Thus, we return 2.
Constraints:
2 <= nums.length <= 100
1 <= nums[i] <= 9999
nums[i] % 10 != 0
Solutions
-
class Solution { public int countBeautifulPairs(int[] nums) { int[] cnt = new int[10]; int ans = 0; for (int x : nums) { for (int y = 0; y < 10; ++y) { if (cnt[y] > 0 && gcd(x % 10, y) == 1) { ans += cnt[y]; } } while (x > 9) { x /= 10; } ++cnt[x]; } return ans; } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } }
-
class Solution { public: int countBeautifulPairs(vector<int>& nums) { int cnt[10]{}; int ans = 0; for (int x : nums) { for (int y = 0; y < 10; ++y) { if (cnt[y] && gcd(x % 10, y) == 1) { ans += cnt[y]; } } while (x > 9) { x /= 10; } ++cnt[x]; } return ans; } };
-
class Solution: def countBeautifulPairs(self, nums: List[int]) -> int: cnt = [0] * 10 ans = 0 for x in nums: for y in range(10): if cnt[y] and gcd(x % 10, y) == 1: ans += cnt[y] cnt[int(str(x)[0])] += 1 return ans
-
func countBeautifulPairs(nums []int) (ans int) { cnt := [10]int{} for _, x := range nums { for y := 0; y < 10; y++ { if cnt[y] > 0 && gcd(x%10, y) == 1 { ans += cnt[y] } } for x > 9 { x /= 10 } cnt[x]++ } return } func gcd(a, b int) int { if b == 0 { return a } return gcd(b, a%b) }
-
function countBeautifulPairs(nums: number[]): number { const cnt: number[] = Array(10).fill(0); let ans = 0; for (let x of nums) { for (let y = 0; y < 10; ++y) { if (cnt[y] > 0 && gcd(x % 10, y) === 1) { ans += cnt[y]; } } while (x > 9) { x = Math.floor(x / 10); } ++cnt[x]; } return ans; } function gcd(a: number, b: number): number { if (b === 0) { return a; } return gcd(b, a % b); }