Welcome to Subscribe On Youtube
2616. Minimize the Maximum Difference of Pairs
Description
You are given a 0-indexed integer array nums
and an integer p
. Find p
pairs of indices of nums
such that the maximum difference amongst all the pairs is minimized. Also, ensure no index appears more than once amongst the p
pairs.
Note that for a pair of elements at the index i
and j
, the difference of this pair is |nums[i] - nums[j]|
, where |x|
represents the absolute value of x
.
Return the minimum maximum difference among all p
pairs. We define the maximum of an empty set to be zero.
Example 1:
Input: nums = [10,1,2,7,1,3], p = 2 Output: 1 Explanation: The first pair is formed from the indices 1 and 4, and the second pair is formed from the indices 2 and 5. The maximum difference is max(|nums[1] - nums[4]|, |nums[2] - nums[5]|) = max(0, 1) = 1. Therefore, we return 1.
Example 2:
Input: nums = [4,2,1,2], p = 1 Output: 0 Explanation: Let the indices 1 and 3 form a pair. The difference of that pair is |2 - 2| = 0, which is the minimum we can attain.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= p <= (nums.length)/2
Solutions
Solution 1: Binary search + Greedy
We find that the maximum difference has the monotonicity, that is, if the maximum difference
We can sort the array nums
, then enumerate the maximum difference
Determine whether there are nums
from left to right, and for the current traversed index
The time complexity is nums
, and nums
. The space complexity is
-
class Solution { public int minimizeMax(int[] nums, int p) { Arrays.sort(nums); int n = nums.length; int l = 0, r = nums[n - 1] - nums[0] + 1; while (l < r) { int mid = (l + r) >>> 1; if (count(nums, mid) >= p) { r = mid; } else { l = mid + 1; } } return l; } private int count(int[] nums, int diff) { int cnt = 0; for (int i = 0; i < nums.length - 1; ++i) { if (nums[i + 1] - nums[i] <= diff) { ++cnt; ++i; } } return cnt; } }
-
class Solution { public: int minimizeMax(vector<int>& nums, int p) { sort(nums.begin(), nums.end()); int n = nums.size(); int l = 0, r = nums[n - 1] - nums[0] + 1; auto check = [&](int diff) -> bool { int cnt = 0; for (int i = 0; i < n - 1; ++i) { if (nums[i + 1] - nums[i] <= diff) { ++cnt; ++i; } } return cnt >= p; }; while (l < r) { int mid = (l + r) >> 1; if (check(mid)) { r = mid; } else { l = mid + 1; } } return l; } };
-
class Solution: def minimizeMax(self, nums: List[int], p: int) -> int: def check(diff: int) -> bool: cnt = i = 0 while i < len(nums) - 1: if nums[i + 1] - nums[i] <= diff: cnt += 1 i += 2 else: i += 1 return cnt >= p nums.sort() return bisect_left(range(nums[-1] - nums[0] + 1), True, key=check)
-
func minimizeMax(nums []int, p int) int { sort.Ints(nums) n := len(nums) r := nums[n-1] - nums[0] + 1 return sort.Search(r, func(diff int) bool { cnt := 0 for i := 0; i < n-1; i++ { if nums[i+1]-nums[i] <= diff { cnt++ i++ } } return cnt >= p }) }