Welcome to Subscribe On Youtube

2609. Find the Longest Balanced Substring of a Binary String

Description

You are given a binary string s consisting only of zeroes and ones.

A substring of s is considered balanced if all zeroes are before ones and the number of zeroes is equal to the number of ones inside the substring. Notice that the empty substring is considered a balanced substring.

Return the length of the longest balanced substring of s.

A substring is a contiguous sequence of characters within a string.

 

Example 1:

Input: s = "01000111"
Output: 6
Explanation: The longest balanced substring is "000111", which has length 6.

Example 2:

Input: s = "00111"
Output: 4
Explanation: The longest balanced substring is "0011", which has length 4. 

Example 3:

Input: s = "111"
Output: 0
Explanation: There is no balanced substring except the empty substring, so the answer is 0.

 

Constraints:

  • 1 <= s.length <= 50
  • '0' <= s[i] <= '1'

Solutions

Solution 1: Brute force

Since the range of $n$ is small, we can enumerate all substrings $s[i..j]$ to check if it is a balanced string. If so, update the answer.

The time complexity is $O(n^3)$, and the space complexity is $O(1)$. Where $n$ is the length of string $s$.

Solution 2: Enumeration optimization

We use variables $zero$ and $one$ to record the number of continuous $0$ and $1$.

Traverse the string $s$, for the current character $c$:

  • If the current character is '0', we check if $one$ is greater than $0$, if so, we reset $zero$ and $one$ to $0$, and then add $1$ to $zero$.
  • If the current character is '1', we add $1$ to $one$, and update the answer to $ans = max(ans, 2 \times min(one, zero))$.

After the traversal is complete, we can get the length of the longest balanced substring.

The time complexity is $O(n)$, and the space complexity is $O(1)$. Where $n$ is the length of string $s$.

  • class Solution {
        public int findTheLongestBalancedSubstring(String s) {
            int zero = 0, one = 0;
            int ans = 0, n = s.length();
            for (int i = 0; i < n; ++i) {
                if (s.charAt(i) == '0') {
                    if (one > 0) {
                        zero = 0;
                        one = 0;
                    }
                    ++zero;
                } else {
                    ans = Math.max(ans, 2 * Math.min(zero, ++one));
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int findTheLongestBalancedSubstring(string s) {
            int zero = 0, one = 0;
            int ans = 0;
            for (char& c : s) {
                if (c == '0') {
                    if (one > 0) {
                        zero = 0;
                        one = 0;
                    }
                    ++zero;
                } else {
                    ans = max(ans, 2 * min(zero, ++one));
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def findTheLongestBalancedSubstring(self, s: str) -> int:
            ans = zero = one = 0
            for c in s:
                if c == '0':
                    if one:
                        zero = one = 0
                    zero += 1
                else:
                    one += 1
                    ans = max(ans, 2 * min(one, zero))
            return ans
    
    
  • func findTheLongestBalancedSubstring(s string) (ans int) {
    	zero, one := 0, 0
    	for _, c := range s {
    		if c == '0' {
    			if one > 0 {
    				zero, one = 0, 0
    			}
    			zero++
    		} else {
    			one++
    			ans = max(ans, 2*min(zero, one))
    		}
    	}
    	return
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    
    func min(a, b int) int {
    	if a < b {
    		return a
    	}
    	return b
    }
    
  • function findTheLongestBalancedSubstring(s: string): number {
        let zero = 0;
        let one = 0;
        let ans = 0;
        for (const c of s) {
            if (c === '0') {
                if (one > 0) {
                    zero = 0;
                    one = 0;
                }
                ++zero;
            } else {
                ans = Math.max(ans, 2 * Math.min(zero, ++one));
            }
        }
        return ans;
    }
    
    
  • impl Solution {
        pub fn find_the_longest_balanced_substring(s: String) -> i32 {
            let mut zero = 0;
            let mut one = 0;
            let mut ans = 0;
    
            for &c in s.as_bytes().iter() {
                if c == b'0' {
                    if one > 0 {
                        zero = 0;
                        one = 0;
                    }
                    zero += 1;
                } else {
                    one += 1;
                    ans = std::cmp::max(ans, std::cmp::min(zero, one) * 2)
                }
            }
    
            ans
        }
    }
    

All Problems

All Solutions