# 2600. K Items With the Maximum Sum

## Description

There is a bag that consists of items, each item has a number 1, 0, or -1 written on it.

You are given four non-negative integers numOnes, numZeros, numNegOnes, and k.

The bag initially contains:

• numOnes items with 1s written on them.
• numZeroes items with 0s written on them.
• numNegOnes items with -1s written on them.

We want to pick exactly k items among the available items. Return the maximum possible sum of numbers written on the items.

Example 1:

Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 2
Output: 2
Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 2 items with 1 written on them and get a sum in a total of 2.
It can be proven that 2 is the maximum possible sum.


Example 2:

Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 4
Output: 3
Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 3 items with 1 written on them, and 1 item with 0 written on it, and get a sum in a total of 3.
It can be proven that 3 is the maximum possible sum.


Constraints:

• 0 <= numOnes, numZeros, numNegOnes <= 50
• 0 <= k <= numOnes + numZeros + numNegOnes

## Solutions

• class Solution {
public int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
if (numOnes >= k) {
return k;
}
k -= numOnes;
if (numZeros >= k) {
return numOnes;
}
k -= numZeros;
return numOnes - k;
}
}

• class Solution {
public:
int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
if (numOnes >= k) {
return k;
}
k -= numOnes;
if (numZeros >= k) {
return numOnes;
}
k -= numZeros;
return numOnes - k;
}
};

• class Solution:
def kItemsWithMaximumSum(
self, numOnes: int, numZeros: int, numNegOnes: int, k: int
) -> int:
if numOnes >= k:
return k
k -= numOnes
if numZeros >= k:
return numOnes
k -= numZeros
return numOnes - k


• func kItemsWithMaximumSum(numOnes int, numZeros int, numNegOnes int, k int) int {
if numOnes >= k {
return k
}
k -= numOnes
if numZeros >= k {
return numOnes
}
k -= numZeros
return numOnes - k
}

• function kItemsWithMaximumSum(
numOnes: number,
numZeros: number,
numNegOnes: number,
k: number,
): number {
if (numOnes >= k) {
return k;
}
k -= numOnes;
if (numZeros >= k) {
return numOnes;
}
k -= numZeros;
return numOnes - k;
}


• public class Solution {
public int KItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
if (numOnes >= k) {
return k;
}
if (numZeros >= k - numOnes) {
return numOnes;
}
return numOnes - (k - numOnes - numZeros);
}
}

• impl Solution {
pub fn k_items_with_maximum_sum(num_ones: i32, num_zeros: i32, num_neg_ones: i32, k: i32) -> i32 {
if num_ones > k {
return k
}

if num_ones + num_zeros > k {
return num_ones
}

num_ones - (k - num_ones - num_zeros)
}
}