Welcome to Subscribe On Youtube

2600. K Items With the Maximum Sum

Description

There is a bag that consists of items, each item has a number 1, 0, or -1 written on it.

You are given four non-negative integers numOnes, numZeros, numNegOnes, and k.

The bag initially contains:

  • numOnes items with 1s written on them.
  • numZeroes items with 0s written on them.
  • numNegOnes items with -1s written on them.

We want to pick exactly k items among the available items. Return the maximum possible sum of numbers written on the items.

 

Example 1:

Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 2
Output: 2
Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 2 items with 1 written on them and get a sum in a total of 2.
It can be proven that 2 is the maximum possible sum.

Example 2:

Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 4
Output: 3
Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 3 items with 1 written on them, and 1 item with 0 written on it, and get a sum in a total of 3.
It can be proven that 3 is the maximum possible sum.

 

Constraints:

  • 0 <= numOnes, numZeros, numNegOnes <= 50
  • 0 <= k <= numOnes + numZeros + numNegOnes

Solutions

  • class Solution {
        public int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
            if (numOnes >= k) {
                return k;
            }
            k -= numOnes;
            if (numZeros >= k) {
                return numOnes;
            }
            k -= numZeros;
            return numOnes - k;
        }
    }
    
  • class Solution {
    public:
        int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
            if (numOnes >= k) {
                return k;
            }
            k -= numOnes;
            if (numZeros >= k) {
                return numOnes;
            }
            k -= numZeros;
            return numOnes - k;
        }
    };
    
  • class Solution:
        def kItemsWithMaximumSum(
            self, numOnes: int, numZeros: int, numNegOnes: int, k: int
        ) -> int:
            if numOnes >= k:
                return k
            k -= numOnes
            if numZeros >= k:
                return numOnes
            k -= numZeros
            return numOnes - k
    
    
  • func kItemsWithMaximumSum(numOnes int, numZeros int, numNegOnes int, k int) int {
    	if numOnes >= k {
    		return k
    	}
    	k -= numOnes
    	if numZeros >= k {
    		return numOnes
    	}
    	k -= numZeros
    	return numOnes - k
    }
    
  • function kItemsWithMaximumSum(
        numOnes: number,
        numZeros: number,
        numNegOnes: number,
        k: number,
    ): number {
        if (numOnes >= k) {
            return k;
        }
        k -= numOnes;
        if (numZeros >= k) {
            return numOnes;
        }
        k -= numZeros;
        return numOnes - k;
    }
    
    
  • public class Solution {
        public int KItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
            if (numOnes >= k) {
                return k;
            }
            if (numZeros >= k - numOnes) {
                return numOnes;
            }
            return numOnes - (k - numOnes - numZeros);
        }
    }
    
  • impl Solution {
        pub fn k_items_with_maximum_sum(num_ones: i32, num_zeros: i32, num_neg_ones: i32, k: i32) -> i32 {
            if num_ones > k {
                return k
            }
    
            if num_ones + num_zeros > k {
                return num_ones
            }
    
            num_ones - (k - num_ones - num_zeros)
        }
    }
    

All Problems

All Solutions