Welcome to Subscribe On Youtube
2711. Difference of Number of Distinct Values on Diagonals
Description
Given a 0-indexed 2D grid
of size m x n
, you should find the matrix answer
of size m x n
.
The value of each cell (r, c)
of the matrix answer
is calculated in the following way:
- Let
topLeft[r][c]
be the number of distinct values in the top-left diagonal of the cell(r, c)
in the matrixgrid
. - Let
bottomRight[r][c]
be the number of distinct values in the bottom-right diagonal of the cell(r, c)
in the matrixgrid
.
Then answer[r][c] = |topLeft[r][c] - bottomRight[r][c]|
.
Return the matrix answer
.
A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end.
A cell (r1, c1)
belongs to the top-left diagonal of the cell (r, c)
, if both belong to the same diagonal and r1 < r
. Similarly is defined bottom-right diagonal.
Example 1:
Input: grid = [[1,2,3],[3,1,5],[3,2,1]] Output: [[1,1,0],[1,0,1],[0,1,1]] Explanation: The 1st diagram denotes the initial grid. The 2nd diagram denotes a grid for cell (0,0), where blue-colored cells are cells on its bottom-right diagonal. The 3rd diagram denotes a grid for cell (1,2), where red-colored cells are cells on its top-left diagonal. The 4th diagram denotes a grid for cell (1,1), where blue-colored cells are cells on its bottom-right diagonal and red-colored cells are cells on its top-left diagonal. - The cell (0,0) contains [1,1] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |1 - 0| = 1. - The cell (1,2) contains [] on its bottom-right diagonal and [2] on its top-left diagonal. The answer is |0 - 1| = 1. - The cell (1,1) contains [1] on its bottom-right diagonal and [1] on its top-left diagonal. The answer is |1 - 1| = 0. The answers of other cells are similarly calculated.
Example 2:
Input: grid = [[1]] Output: [[0]] Explanation: - The cell (0,0) contains [] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |0 - 0| = 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n, grid[i][j] <= 50
Solutions
-
class Solution { public int[][] differenceOfDistinctValues(int[][] grid) { int m = grid.length, n = grid[0].length; int[][] ans = new int[m][n]; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int x = i, y = j; Set<Integer> s = new HashSet<>(); while (x > 0 && y > 0) { s.add(grid[--x][--y]); } int tl = s.size(); x = i; y = j; s.clear(); while (x < m - 1 && y < n - 1) { s.add(grid[++x][++y]); } int br = s.size(); ans[i][j] = Math.abs(tl - br); } } return ans; } }
-
class Solution { public: vector<vector<int>> differenceOfDistinctValues(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(); vector<vector<int>> ans(m, vector<int>(n)); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int x = i, y = j; unordered_set<int> s; while (x > 0 && y > 0) { s.insert(grid[--x][--y]); } int tl = s.size(); x = i; y = j; s.clear(); while (x < m - 1 && y < n - 1) { s.insert(grid[++x][++y]); } int br = s.size(); ans[i][j] = abs(tl - br); } } return ans; } };
-
class Solution: def differenceOfDistinctValues(self, grid: List[List[int]]) -> List[List[int]]: m, n = len(grid), len(grid[0]) ans = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): x, y = i, j s = set() while x and y: x, y = x - 1, y - 1 s.add(grid[x][y]) tl = len(s) x, y = i, j s = set() while x + 1 < m and y + 1 < n: x, y = x + 1, y + 1 s.add(grid[x][y]) br = len(s) ans[i][j] = abs(tl - br) return ans
-
func differenceOfDistinctValues(grid [][]int) [][]int { m, n := len(grid), len(grid[0]) ans := make([][]int, m) for i := range grid { ans[i] = make([]int, n) for j := range grid[i] { x, y := i, j s := map[int]bool{} for x > 0 && y > 0 { x, y = x-1, y-1 s[grid[x][y]] = true } tl := len(s) x, y = i, j s = map[int]bool{} for x+1 < m && y+1 < n { x, y = x+1, y+1 s[grid[x][y]] = true } br := len(s) ans[i][j] = abs(tl - br) } } return ans } func abs(x int) int { if x < 0 { return -x } return x }
-
function differenceOfDistinctValues(grid: number[][]): number[][] { const m = grid.length; const n = grid[0].length; const ans: number[][] = Array(m) .fill(0) .map(() => Array(n).fill(0)); for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { let [x, y] = [i, j]; const s = new Set<number>(); while (x && y) { s.add(grid[--x][--y]); } const tl = s.size; [x, y] = [i, j]; s.clear(); while (x + 1 < m && y + 1 < n) { s.add(grid[++x][++y]); } const br = s.size; ans[i][j] = Math.abs(tl - br); } } return ans; }