Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2572.html
2572. Count the Number of Square-Free Subsets
Description
You are given a positive integer 0-indexed array nums
.
A subset of the array nums
is square-free if the product of its elements is a square-free integer.
A square-free integer is an integer that is divisible by no square number other than 1
.
Return the number of square-free non-empty subsets of the array nums. Since the answer may be too large, return it modulo 109 + 7
.
A non-empty subset of nums
is an array that can be obtained by deleting some (possibly none but not all) elements from nums
. Two subsets are different if and only if the chosen indices to delete are different.
Example 1:
Input: nums = [3,4,4,5] Output: 3 Explanation: There are 3 square-free subsets in this example: - The subset consisting of the 0th element [3]. The product of its elements is 3, which is a square-free integer. - The subset consisting of the 3rd element [5]. The product of its elements is 5, which is a square-free integer. - The subset consisting of 0th and 3rd elements [3,5]. The product of its elements is 15, which is a square-free integer. It can be proven that there are no more than 3 square-free subsets in the given array.
Example 2:
Input: nums = [1] Output: 1 Explanation: There is 1 square-free subset in this example: - The subset consisting of the 0th element [1]. The product of its elements is 1, which is a square-free integer. It can be proven that there is no more than 1 square-free subset in the given array.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 30
Solutions
-
class Solution { public int squareFreeSubsets(int[] nums) { int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; int[] cnt = new int[31]; for (int x : nums) { ++cnt[x]; } final int mod = (int) 1e9 + 7; int n = primes.length; long[] f = new long[1 << n]; f[0] = 1; for (int i = 0; i < cnt[1]; ++i) { f[0] = (f[0] * 2) % mod; } for (int x = 2; x < 31; ++x) { if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) { continue; } int mask = 0; for (int i = 0; i < n; ++i) { if (x % primes[i] == 0) { mask |= 1 << i; } } for (int state = (1 << n) - 1; state > 0; --state) { if ((state & mask) == mask) { f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod; } } } long ans = 0; for (int i = 0; i < 1 << n; ++i) { ans = (ans + f[i]) % mod; } ans -= 1; return (int) ans; } }
-
class Solution { public: int squareFreeSubsets(vector<int>& nums) { int primes[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; int cnt[31]{}; for (int& x : nums) { ++cnt[x]; } int n = 10; const int mod = 1e9 + 7; vector<long long> f(1 << n); f[0] = 1; for (int i = 0; i < cnt[1]; ++i) { f[0] = f[0] * 2 % mod; } for (int x = 2; x < 31; ++x) { if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) { continue; } int mask = 0; for (int i = 0; i < n; ++i) { if (x % primes[i] == 0) { mask |= 1 << i; } } for (int state = (1 << n) - 1; state; --state) { if ((state & mask) == mask) { f[state] = (f[state] + 1LL * cnt[x] * f[state ^ mask]) % mod; } } } long long ans = -1; for (int i = 0; i < 1 << n; ++i) { ans = (ans + f[i]) % mod; } return ans; } };
-
class Solution: def squareFreeSubsets(self, nums: List[int]) -> int: primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] cnt = Counter(nums) mod = 10**9 + 7 n = len(primes) f = [0] * (1 << n) f[0] = pow(2, cnt[1]) for x in range(2, 31): if cnt[x] == 0 or x % 4 == 0 or x % 9 == 0 or x % 25 == 0: continue mask = 0 for i, p in enumerate(primes): if x % p == 0: mask |= 1 << i for state in range((1 << n) - 1, 0, -1): if state & mask == mask: f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod return sum(v for v in f) % mod - 1
-
func squareFreeSubsets(nums []int) (ans int) { primes := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29} cnt := [31]int{} for _, x := range nums { cnt[x]++ } const mod int = 1e9 + 7 n := 10 f := make([]int, 1<<n) f[0] = 1 for i := 0; i < cnt[1]; i++ { f[0] = f[0] * 2 % mod } for x := 2; x < 31; x++ { if cnt[x] == 0 || x%4 == 0 || x%9 == 0 || x%25 == 0 { continue } mask := 0 for i, p := range primes { if x%p == 0 { mask |= 1 << i } } for state := 1<<n - 1; state > 0; state-- { if state&mask == mask { f[state] = (f[state] + f[state^mask]*cnt[x]) % mod } } } ans = -1 for _, v := range f { ans = (ans + v) % mod } return }