Welcome to Subscribe On Youtube

2685. Count the Number of Complete Components

Description

You are given an integer n. There is an undirected graph with n vertices, numbered from 0 to n - 1. You are given a 2D integer array edges where edges[i] = [ai, bi] denotes that there exists an undirected edge connecting vertices ai and bi.

Return the number of complete connected components of the graph.

A connected component is a subgraph of a graph in which there exists a path between any two vertices, and no vertex of the subgraph shares an edge with a vertex outside of the subgraph.

A connected component is said to be complete if there exists an edge between every pair of its vertices.

 

Example 1:

Input: n = 6, edges = [[0,1],[0,2],[1,2],[3,4]]
Output: 3
Explanation: From the picture above, one can see that all of the components of this graph are complete.

Example 2:

Input: n = 6, edges = [[0,1],[0,2],[1,2],[3,4],[3,5]]
Output: 1
Explanation: The component containing vertices 0, 1, and 2 is complete since there is an edge between every pair of two vertices. On the other hand, the component containing vertices 3, 4, and 5 is not complete since there is no edge between vertices 4 and 5. Thus, the number of complete components in this graph is 1.

 

Constraints:

  • 1 <= n <= 50
  • 0 <= edges.length <= n * (n - 1) / 2
  • edges[i].length == 2
  • 0 <= ai, bi <= n - 1
  • ai != bi
  • There are no repeated edges.

Solutions

  • class Solution {
        private List<Integer>[] g;
        private boolean[] vis;
    
        public int countCompleteComponents(int n, int[][] edges) {
            g = new List[n];
            vis = new boolean[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            for (int[] e : edges) {
                int a = e[0], b = e[1];
                g[a].add(b);
                g[b].add(a);
            }
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                if (!vis[i]) {
                    int[] t = dfs(i);
                    if (t[0] * (t[0] - 1) == t[1]) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    
        private int[] dfs(int i) {
            vis[i] = true;
            int x = 1, y = g[i].size();
            for (int j : g[i]) {
                if (!vis[j]) {
                    int[] t = dfs(j);
                    x += t[0];
                    y += t[1];
                }
            }
            return new int[] {x, y};
        }
    }
    
  • class Solution {
    public:
        int countCompleteComponents(int n, vector<vector<int>>& edges) {
            vector<vector<int>> g(n);
            bool vis[n];
            memset(vis, false, sizeof(vis));
            for (auto& e : edges) {
                int a = e[0], b = e[1];
                g[a].push_back(b);
                g[b].push_back(a);
            }
            function<pair<int, int>(int)> dfs = [&](int i) -> pair<int, int> {
                vis[i] = true;
                int x = 1, y = g[i].size();
                for (int j : g[i]) {
                    if (!vis[j]) {
                        auto [a, b] = dfs(j);
                        x += a;
                        y += b;
                    }
                }
                return make_pair(x, y);
            };
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                if (!vis[i]) {
                    auto [a, b] = dfs(i);
                    if (a * (a - 1) == b) {
                        ++ans;
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def countCompleteComponents(self, n: int, edges: List[List[int]]) -> int:
            def dfs(i: int) -> (int, int):
                vis[i] = True
                x, y = 1, len(g[i])
                for j in g[i]:
                    if not vis[j]:
                        a, b = dfs(j)
                        x += a
                        y += b
                return x, y
    
            g = defaultdict(list)
            for a, b in edges:
                g[a].append(b)
                g[b].append(a)
            vis = [False] * n
            ans = 0
            for i in range(n):
                if not vis[i]:
                    a, b = dfs(i)
                    ans += a * (a - 1) == b
            return ans
    
    
  • func countCompleteComponents(n int, edges [][]int) (ans int) {
    	g := make([][]int, n)
    	vis := make([]bool, n)
    	for _, e := range edges {
    		a, b := e[0], e[1]
    		g[a] = append(g[a], b)
    		g[b] = append(g[b], a)
    	}
    	var dfs func(int) (int, int)
    	dfs = func(i int) (int, int) {
    		vis[i] = true
    		x, y := 1, len(g[i])
    		for _, j := range g[i] {
    			if !vis[j] {
    				a, b := dfs(j)
    				x += a
    				y += b
    			}
    		}
    		return x, y
    	}
    	for i := range vis {
    		if !vis[i] {
    			a, b := dfs(i)
    			if a*(a-1) == b {
    				ans++
    			}
    		}
    	}
    	return
    }
    

All Problems

All Solutions