Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2569.html
2569. Handling Sum Queries After Update
Description
You are given two 0-indexed arrays nums1
and nums2
and a 2D array queries
of queries. There are three types of queries:
- For a query of type 1,
queries[i] = [1, l, r]
. Flip the values from0
to1
and from1
to0
innums1
from indexl
to indexr
. Bothl
andr
are 0-indexed. - For a query of type 2,
queries[i] = [2, p, 0]
. For every index0 <= i < n
, setnums2[i] = nums2[i] + nums1[i] * p
. - For a query of type 3,
queries[i] = [3, 0, 0]
. Find the sum of the elements innums2
.
Return an array containing all the answers to the third type queries.
Example 1:
Input: nums1 = [1,0,1], nums2 = [0,0,0], queries = [[1,1,1],[2,1,0],[3,0,0]] Output: [3] Explanation: After the first query nums1 becomes [1,1,1]. After the second query, nums2 becomes [1,1,1], so the answer to the third query is 3. Thus, [3] is returned.
Example 2:
Input: nums1 = [1], nums2 = [5], queries = [[2,0,0],[3,0,0]] Output: [5] Explanation: After the first query, nums2 remains [5], so the answer to the second query is 5. Thus, [5] is returned.
Constraints:
1 <= nums1.length,nums2.length <= 105
nums1.length = nums2.length
1 <= queries.length <= 105
queries[i].length = 3
0 <= l <= r <= nums1.length - 1
0 <= p <= 106
0 <= nums1[i] <= 1
0 <= nums2[i] <= 109
Solutions
Solution 1: Segment Tree
According to the problem description:
- Operation $1$ is to reverse all numbers in the index range $[l,..r]$ of array
nums1
, that is, change $0$ to $1$ and $1$ to $0$. - Operation $3$ is to sum all numbers in array
nums2
. - Operation $2$ is to add the sum of all numbers in array
nums2
with $p$ times the sum of all numbers in arraynums1
, that is, $sum(nums2) = sum(nums2) + p * sum(nums1)$.
Therefore, we actually only need to maintain the segment sum of array nums1
, which can be implemented through a segment tree.
We define each node of the segment tree as Node
, each node contains the following attributes:
l
: The left endpoint of the node, the index starts from $1$.r
: The right endpoint of the node, the index starts from $1$.s
: The segment sum of the node.lazy
: The lazy tag of the node.
The segment tree mainly has the following operations:
build(u, l, r)
: Build the segment tree.pushdown(u)
: Propagate the lazy tag.pushup(u)
: Update the information of the parent node with the information of the child nodes.modify(u, l, r)
: Modify the segment sum. In this problem, it is to reverse each number in the segment, so the segment sum $s = r - l + 1 - s$.query(u, l, r)
: Query the segment sum.
First, calculate the sum of all numbers in array nums2
, denoted as $s$.
When executing operation $1$, we only need to call modify(1, l + 1, r + 1)
.
When executing operation $2$, we update $s = s + p \times query(1, 1, n)$.
When executing operation $3$, we just need to add $s$ to the answer array.
The time complexity is $O(n + m \times \log n)$, and the space complexity is $O(n)$. Where $n$ and $m$ are the lengths of arrays nums1
and queries
respectively.
-
class Node { int l, r; int s, lazy; } class SegmentTree { private Node[] tr; private int[] nums; public SegmentTree(int[] nums) { int n = nums.length; this.nums = nums; tr = new Node[n << 2]; for (int i = 0; i < tr.length; ++i) { tr[i] = new Node(); } build(1, 1, n); } private void build(int u, int l, int r) { tr[u].l = l; tr[u].r = r; if (l == r) { tr[u].s = nums[l - 1]; return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); pushup(u); } public void modify(int u, int l, int r) { if (tr[u].l >= l && tr[u].r <= r) { tr[u].lazy ^= 1; tr[u].s = tr[u].r - tr[u].l + 1 - tr[u].s; return; } pushdown(u); int mid = (tr[u].l + tr[u].r) >> 1; if (l <= mid) { modify(u << 1, l, r); } if (r > mid) { modify(u << 1 | 1, l, r); } pushup(u); } public int query(int u, int l, int r) { if (tr[u].l >= l && tr[u].r <= r) { return tr[u].s; } pushdown(u); int mid = (tr[u].l + tr[u].r) >> 1; int res = 0; if (l <= mid) { res += query(u << 1, l, r); } if (r > mid) { res += query(u << 1 | 1, l, r); } return res; } private void pushup(int u) { tr[u].s = tr[u << 1].s + tr[u << 1 | 1].s; } private void pushdown(int u) { if (tr[u].lazy == 1) { int mid = (tr[u].l + tr[u].r) >> 1; tr[u << 1].s = mid - tr[u].l + 1 - tr[u << 1].s; tr[u << 1].lazy ^= 1; tr[u << 1 | 1].s = tr[u].r - mid - tr[u << 1 | 1].s; tr[u << 1 | 1].lazy ^= 1; tr[u].lazy ^= 1; } } } class Solution { public long[] handleQuery(int[] nums1, int[] nums2, int[][] queries) { SegmentTree tree = new SegmentTree(nums1); long s = 0; for (int x : nums2) { s += x; } int m = 0; for (var q : queries) { if (q[0] == 3) { ++m; } } long[] ans = new long[m]; int i = 0; for (var q : queries) { if (q[0] == 1) { tree.modify(1, q[1] + 1, q[2] + 1); } else if (q[0] == 2) { s += 1L * q[1] * tree.query(1, 1, nums2.length); } else { ans[i++] = s; } } return ans; } }
-
class Node { public: int l = 0, r = 0; int s = 0, lazy = 0; }; class SegmentTree { public: SegmentTree(vector<int>& nums) { this->nums = nums; int n = nums.size(); tr.resize(n << 2); for (int i = 0; i < tr.size(); ++i) { tr[i] = new Node(); } build(1, 1, n); } void modify(int u, int l, int r) { if (tr[u]->l >= l && tr[u]->r <= r) { tr[u]->lazy ^= 1; tr[u]->s = tr[u]->r - tr[u]->l + 1 - tr[u]->s; return; } pushdown(u); int mid = (tr[u]->l + tr[u]->r) >> 1; if (l <= mid) { modify(u << 1, l, r); } if (r > mid) { modify(u << 1 | 1, l, r); } pushup(u); } int query(int u, int l, int r) { if (tr[u]->l >= l && tr[u]->r <= r) { return tr[u]->s; } pushdown(u); int mid = (tr[u]->l + tr[u]->r) >> 1; int res = 0; if (l <= mid) { res += query(u << 1, l, r); } if (r > mid) { res += query(u << 1 | 1, l, r); } return res; } private: vector<Node*> tr; vector<int> nums; void build(int u, int l, int r) { tr[u]->l = l; tr[u]->r = r; if (l == r) { tr[u]->s = nums[l - 1]; return; } int mid = (l + r) >> 1; build(u << 1, l, mid); build(u << 1 | 1, mid + 1, r); pushup(u); } void pushup(int u) { tr[u]->s = tr[u << 1]->s + tr[u << 1 | 1]->s; } void pushdown(int u) { if (tr[u]->lazy) { int mid = (tr[u]->l + tr[u]->r) >> 1; tr[u << 1]->s = mid - tr[u]->l + 1 - tr[u << 1]->s; tr[u << 1]->lazy ^= 1; tr[u << 1 | 1]->s = tr[u]->r - mid - tr[u << 1 | 1]->s; tr[u << 1 | 1]->lazy ^= 1; tr[u]->lazy ^= 1; } } }; class Solution { public: vector<long long> handleQuery(vector<int>& nums1, vector<int>& nums2, vector<vector<int>>& queries) { SegmentTree* tree = new SegmentTree(nums1); long long s = 0; for (int& x : nums2) { s += x; } vector<long long> ans; for (auto& q : queries) { if (q[0] == 1) { tree->modify(1, q[1] + 1, q[2] + 1); } else if (q[0] == 2) { s += 1LL * q[1] * tree->query(1, 1, nums1.size()); } else { ans.push_back(s); } } return ans; } };
-
class Node: def __init__(self): self.l = self.r = 0 self.s = self.lazy = 0 class SegmentTree: def __init__(self, nums): self.nums = nums n = len(nums) self.tr = [Node() for _ in range(n << 2)] self.build(1, 1, n) def build(self, u, l, r): self.tr[u].l, self.tr[u].r = l, r if l == r: self.tr[u].s = self.nums[l - 1] return mid = (l + r) >> 1 self.build(u << 1, l, mid) self.build(u << 1 | 1, mid + 1, r) self.pushup(u) def modify(self, u, l, r): if self.tr[u].l >= l and self.tr[u].r <= r: self.tr[u].lazy ^= 1 self.tr[u].s = self.tr[u].r - self.tr[u].l + 1 - self.tr[u].s return self.pushdown(u) mid = (self.tr[u].l + self.tr[u].r) >> 1 if l <= mid: self.modify(u << 1, l, r) if r > mid: self.modify(u << 1 | 1, l, r) self.pushup(u) def query(self, u, l, r): if self.tr[u].l >= l and self.tr[u].r <= r: return self.tr[u].s self.pushdown(u) mid = (self.tr[u].l + self.tr[u].r) >> 1 res = 0 if l <= mid: res += self.query(u << 1, l, r) if r > mid: res += self.query(u << 1 | 1, l, r) return res def pushup(self, u): self.tr[u].s = self.tr[u << 1].s + self.tr[u << 1 | 1].s def pushdown(self, u): if self.tr[u].lazy: mid = (self.tr[u].l + self.tr[u].r) >> 1 self.tr[u << 1].s = mid - self.tr[u].l + 1 - self.tr[u << 1].s self.tr[u << 1].lazy ^= 1 self.tr[u << 1 | 1].s = self.tr[u].r - mid - self.tr[u << 1 | 1].s self.tr[u << 1 | 1].lazy ^= 1 self.tr[u].lazy ^= 1 class Solution: def handleQuery( self, nums1: List[int], nums2: List[int], queries: List[List[int]] ) -> List[int]: tree = SegmentTree(nums1) s = sum(nums2) ans = [] for op, a, b in queries: if op == 1: tree.modify(1, a + 1, b + 1) elif op == 2: s += a * tree.query(1, 1, len(nums1)) else: ans.append(s) return ans
-
type node struct { l, r, s, lazy int } type segmentTree struct { nums []int tr []*node } func newSegmentTree(nums []int) *segmentTree { n := len(nums) tr := make([]*node, n<<2) for i := range tr { tr[i] = &node{} } t := &segmentTree{nums, tr} t.build(1, 1, n) return t } func (t *segmentTree) build(u, l, r int) { t.tr[u].l, t.tr[u].r = l, r if l == r { t.tr[u].s = t.nums[l-1] return } mid := (l + r) >> 1 t.build(u<<1, l, mid) t.build(u<<1|1, mid+1, r) t.pushup(u) } func (t *segmentTree) modify(u, l, r int) { if t.tr[u].l >= l && t.tr[u].r <= r { t.tr[u].lazy ^= 1 t.tr[u].s = t.tr[u].r - t.tr[u].l + 1 - t.tr[u].s return } t.pushdown(u) mid := (t.tr[u].l + t.tr[u].r) >> 1 if l <= mid { t.modify(u<<1, l, r) } if r > mid { t.modify(u<<1|1, l, r) } t.pushup(u) } func (t *segmentTree) query(u, l, r int) int { if t.tr[u].l >= l && t.tr[u].r <= r { return t.tr[u].s } t.pushdown(u) mid := (t.tr[u].l + t.tr[u].r) >> 1 res := 0 if l <= mid { res += t.query(u<<1, l, r) } if r > mid { res += t.query(u<<1|1, l, r) } return res } func (t *segmentTree) pushup(u int) { t.tr[u].s = t.tr[u<<1].s + t.tr[u<<1|1].s } func (t *segmentTree) pushdown(u int) { if t.tr[u].lazy == 1 { mid := (t.tr[u].l + t.tr[u].r) >> 1 t.tr[u<<1].s = mid - t.tr[u].l + 1 - t.tr[u<<1].s t.tr[u<<1].lazy ^= 1 t.tr[u<<1|1].s = t.tr[u].r - mid - t.tr[u<<1|1].s t.tr[u<<1|1].lazy ^= 1 t.tr[u].lazy ^= 1 } } func handleQuery(nums1 []int, nums2 []int, queries [][]int) (ans []int64) { tree := newSegmentTree(nums1) var s int64 for _, x := range nums2 { s += int64(x) } for _, q := range queries { if q[0] == 1 { tree.modify(1, q[1]+1, q[2]+1) } else if q[0] == 2 { s += int64(q[1] * tree.query(1, 1, len(nums1))) } else { ans = append(ans, s) } } return }