Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2567.html
2567. Minimum Score by Changing Two Elements
Description
You are given a 0-indexed integer array nums
.
- The low score of
nums
is the minimum value of|nums[i] - nums[j]|
over all0 <= i < j < nums.length
. - The high score of
nums
is the maximum value of|nums[i] - nums[j]|
over all0 <= i < j < nums.length
. - The score of
nums
is the sum of the high and low scores of nums.
To minimize the score of nums
, we can change the value of at most two elements of nums
.
Return the minimum possible score after changing the value of at most two elements of nums
.
Note that |x|
denotes the absolute value of x
.
Example 1:
Input: nums = [1,4,3]
Output: 0
Explanation: Change value of nums[1] and nums[2] to 1 so that nums becomes [1,1,1]. Now, the value of |nums[i] - nums[j]|
is always equal to 0, so we return 0 + 0 = 0.
Example 2:
Input: nums = [1,4,7,8,5] Output: 3 Explanation: Change nums[0] and nums[1] to be 6. Now nums becomes [6,6,7,8,5]. Our low score is achieved when i = 0 and j = 1, in which case |nums[i] - nums[j]
| = |6 - 6| = 0. Our high score is achieved when i = 3 and j = 4, in which case |nums[i] - nums[j]
| = |8 - 5| = 3. The sum of our high and low score is 3, which we can prove to be minimal.
Constraints:
3 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions
-
class Solution { public int minimizeSum(int[] nums) { Arrays.sort(nums); int n = nums.length; int a = nums[n - 1] - nums[2]; int b = nums[n - 2] - nums[1]; int c = nums[n - 3] - nums[0]; return Math.min(a, Math.min(b, c)); } }
-
class Solution { public: int minimizeSum(vector<int>& nums) { sort(nums.begin(), nums.end()); int n = nums.size(); return min({nums[n - 1] - nums[2], nums[n - 2] - nums[1], nums[n - 3] - nums[0]}); } };
-
class Solution: def minimizeSum(self, nums: List[int]) -> int: nums.sort() return min(nums[-1] - nums[2], nums[-2] - nums[1], nums[-3] - nums[0])
-
func minimizeSum(nums []int) int { sort.Ints(nums) n := len(nums) return min(nums[n-1]-nums[2], min(nums[n-2]-nums[1], nums[n-3]-nums[0])) } func min(a, b int) int { if a < b { return a } return b }
-
function minimizeSum(nums: number[]): number { nums.sort((a, b) => a - b); const n = nums.length; return Math.min( nums[n - 3] - nums[0], nums[n - 2] - nums[1], nums[n - 1] - nums[2], ); }
-
impl Solution { pub fn minimize_sum(mut nums: Vec<i32>) -> i32 { nums.sort(); let n = nums.len(); (nums[n - 1] - nums[2]) .min(nums[n - 2] - nums[1]) .min(nums[n - 3] - nums[0]) } }