Welcome to Subscribe On Youtube
2662. Minimum Cost of a Path With Special Roads
Description
You are given an array start
where start = [startX, startY]
represents your initial position (startX, startY)
in a 2D space. You are also given the array target
where target = [targetX, targetY]
represents your target position (targetX, targetY)
.
The cost of going from a position (x1, y1)
to any other position in the space (x2, y2)
is |x2 - x1| + |y2 - y1|
.
There are also some special roads. You are given a 2D array specialRoads
where specialRoads[i] = [x1i, y1i, x2i, y2i, costi]
indicates that the ith
special road can take you from (x1i, y1i)
to (x2i, y2i)
with a cost equal to costi
. You can use each special road any number of times.
Return the minimum cost required to go from (startX, startY)
to (targetX, targetY)
.
Example 1:
Input: start = [1,1], target = [4,5], specialRoads = [[1,2,3,3,2],[3,4,4,5,1]] Output: 5 Explanation: The optimal path from (1,1) to (4,5) is the following: - (1,1) -> (1,2). This move has a cost of |1 - 1| + |2 - 1| = 1. - (1,2) -> (3,3). This move uses the first special edge, the cost is 2. - (3,3) -> (3,4). This move has a cost of |3 - 3| + |4 - 3| = 1. - (3,4) -> (4,5). This move uses the second special edge, the cost is 1. So the total cost is 1 + 2 + 1 + 1 = 5. It can be shown that we cannot achieve a smaller total cost than 5.
Example 2:
Input: start = [3,2], target = [5,7], specialRoads = [[3,2,3,4,4],[3,3,5,5,5],[3,4,5,6,6]] Output: 7 Explanation: It is optimal to not use any special edges and go directly from the starting to the ending position with a cost |5 - 3| + |7 - 2| = 7.
Constraints:
start.length == target.length == 2
1 <= startX <= targetX <= 105
1 <= startY <= targetY <= 105
1 <= specialRoads.length <= 200
specialRoads[i].length == 5
startX <= x1i, x2i <= targetX
startY <= y1i, y2i <= targetY
1 <= costi <= 105
Solutions
Solution 1: Dijkstra
We can find that for each coordinate $(x, y)$ we visit, suppose the minimum cost from the start point to $(x, y)$ is $d$. If we choose to move directly to $(targetX, targetY)$, then the total cost is $d + | x - targetX | + | y - targetY | $. If we choose to go through a special path $(x_1, y_1) \rightarrow (x_2, y_2)$, then we need to spend $ | x - x_1 | + | y - y_1 | + cost$ to move from $(x, y)$ to $(x_2, y_2)$. |
Therefore, we can use Dijkstra algorithm to find the minimum cost from the start point to all points, and then choose the smallest one from them.
We define a priority queue $q$, each element in the queue is a triple $(d, x, y)$, which means that the minimum cost from the start point to $(x, y)$ is $d$. Initially, we add $(0, startX, startY)$ to the queue.
In each step, we take out the first element $(d, x, y)$ in the queue, at this time we can update the answer, that is $ans = \min(ans, d + dist(x, y, targetX, targetY))$. Then we enumerate all special paths $(x_1, y_1) \rightarrow (x_2, y_2)$ and add $(d + dist(x, y, x_1, y_1) + cost, x_2, y_2)$ to the queue.
Finally, when the queue is empty, we can get the answer.
The time complexity is $O(n^2 \times \log n)$, and the space complexity is $O(n^2)$. Where $n$ is the number of special paths.
-
class Solution { public int minimumCost(int[] start, int[] target, int[][] specialRoads) { int ans = 1 << 30; int n = 1000000; PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]); Set<Long> vis = new HashSet<>(); q.offer(new int[] {0, start[0], start[1]}); while (!q.isEmpty()) { var p = q.poll(); int x = p[1], y = p[2]; long k = 1L * x * n + y; if (vis.contains(k)) { continue; } vis.add(k); int d = p[0]; ans = Math.min(ans, d + dist(x, y, target[0], target[1])); for (var r : specialRoads) { int x1 = r[0], y1 = r[1], x2 = r[2], y2 = r[3], cost = r[4]; q.offer(new int[] {d + dist(x, y, x1, y1) + cost, x2, y2}); } } return ans; } private int dist(int x1, int y1, int x2, int y2) { return Math.abs(x1 - x2) + Math.abs(y1 - y2); } }
-
class Solution { public: int minimumCost(vector<int>& start, vector<int>& target, vector<vector<int>>& specialRoads) { auto dist = [](int x1, int y1, int x2, int y2) { return abs(x1 - x2) + abs(y1 - y2); }; int ans = 1 << 30; int n = 1e6; priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, greater<tuple<int, int, int>>> pq; pq.push({0, start[0], start[1]}); unordered_set<long long> vis; while (!pq.empty()) { auto [d, x, y] = pq.top(); pq.pop(); long long k = 1LL * x * n + y; if (vis.count(k)) { continue; } vis.insert(k); ans = min(ans, d + dist(x, y, target[0], target[1])); for (auto& r : specialRoads) { int x1 = r[0], y1 = r[1], x2 = r[2], y2 = r[3], cost = r[4]; pq.push({d + dist(x, y, x1, y1) + cost, x2, y2}); } } return ans; } };
-
class Solution: def minimumCost( self, start: List[int], target: List[int], specialRoads: List[List[int]] ) -> int: def dist(x1: int, y1: int, x2: int, y2: int) -> int: return abs(x1 - x2) + abs(y1 - y2) q = [(0, start[0], start[1])] vis = set() ans = inf while q: d, x, y = heappop(q) if (x, y) in vis: continue vis.add((x, y)) ans = min(ans, d + dist(x, y, *target)) for x1, y1, x2, y2, cost in specialRoads: heappush(q, (d + dist(x, y, x1, y1) + cost, x2, y2)) return ans
-
func minimumCost(start []int, target []int, specialRoads [][]int) int { ans := 1 << 30 const n int = 1e6 pq := hp{ {0, start[0], start[1]} } vis := map[int]bool{} for len(pq) > 0 { p := pq[0] heap.Pop(&pq) d, x, y := p.d, p.x, p.y if vis[x*n+y] { continue } vis[x*n+y] = true ans = min(ans, d+dist(x, y, target[0], target[1])) for _, r := range specialRoads { x1, y1, x2, y2, cost := r[0], r[1], r[2], r[3], r[4] heap.Push(&pq, tuple{d + dist(x, y, x1, y1) + cost, x2, y2}) } } return ans } func dist(x1, y1, x2, y2 int) int { return abs(x1-x2) + abs(y1-y2) } func abs(x int) int { if x < 0 { return -x } return x } type tuple struct { d, x, y int } type hp []tuple func (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].d < h[j].d } func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp) Push(v any) { *h = append(*h, v.(tuple)) } func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
-
function minimumCost(start: number[], target: number[], specialRoads: number[][]): number { const dist = (x1: number, y1: number, x2: number, y2: number): number => { return Math.abs(x1 - x2) + Math.abs(y1 - y2); }; const q = new Heap<[number, number, number]>((a, b) => a[0] - b[0]); q.push([0, start[0], start[1]]); const n = 1000000; const vis: Set<number> = new Set(); let ans = 1 << 30; while (q.size()) { const [d, x, y] = q.pop(); const k = x * n + y; if (vis.has(k)) { continue; } vis.add(k); ans = Math.min(ans, d + dist(x, y, target[0], target[1])); for (const [x1, y1, x2, y2, cost] of specialRoads) { q.push([d + dist(x, y, x1, y1) + cost, x2, y2]); } } return ans; } type Compare<T> = (lhs: T, rhs: T) => number; class Heap<T = number> { data: Array<T | null>; lt: (i: number, j: number) => boolean; constructor(); constructor(data: T[]); constructor(compare: Compare<T>); constructor(data: T[], compare: Compare<T>); constructor(data: T[] | Compare<T>, compare?: (lhs: T, rhs: T) => number); constructor( data: T[] | Compare<T> = [], compare: Compare<T> = (lhs: T, rhs: T) => (lhs < rhs ? -1 : lhs > rhs ? 1 : 0), ) { if (typeof data === 'function') { compare = data; data = []; } this.data = [null, ...data]; this.lt = (i, j) => compare(this.data[i]!, this.data[j]!) < 0; for (let i = this.size(); i > 0; i--) this.heapify(i); } size(): number { return this.data.length - 1; } push(v: T): void { this.data.push(v); let i = this.size(); while (i >> 1 !== 0 && this.lt(i, i >> 1)) this.swap(i, (i >>= 1)); } pop(): T { this.swap(1, this.size()); const top = this.data.pop(); this.heapify(1); return top!; } top(): T { return this.data[1]!; } heapify(i: number): void { while (true) { let min = i; const [l, r, n] = [i * 2, i * 2 + 1, this.data.length]; if (l < n && this.lt(l, min)) min = l; if (r < n && this.lt(r, min)) min = r; if (min !== i) { this.swap(i, min); i = min; } else break; } } clear(): void { this.data = [null]; } private swap(i: number, j: number): void { const d = this.data; [d[i], d[j]] = [d[j], d[i]]; } }