Welcome to Subscribe On Youtube
2638. Count the Number of K-Free Subsets
Description
You are given an integer array nums
, which contains distinct elements and an integer k
.
A subset is called a k-Free subset if it contains no two elements with an absolute difference equal to k
. Notice that the empty set is a k-Free subset.
Return the number of k-Free subsets of nums
.
A subset of an array is a selection of elements (possibly none) of the array.
Example 1:
Input: nums = [5,4,6], k = 1 Output: 5 Explanation: There are 5 valid subsets: {}, {5}, {4}, {6} and {4, 6}.
Example 2:
Input: nums = [2,3,5,8], k = 5 Output: 12 Explanation: There are 12 valid subsets: {}, {2}, {3}, {5}, {8}, {2, 3}, {2, 3, 5}, {2, 5}, {2, 5, 8}, {2, 8}, {3, 5} and {5, 8}.
Example 3:
Input: nums = [10,5,9,11], k = 20 Output: 16 Explanation: All subsets are valid. Since the total count of subsets is 24 = 16, so the answer is 16.
Constraints:
1 <= nums.length <= 50
1 <= nums[i] <= 1000
1 <= k <= 1000
Solutions
Solution 1: Grouping + Dynamic Programming
First, sort the array $nums$ in ascending order, and then group the elements in the array according to the remainder modulo $k$, that is, the elements $nums[i] \bmod k$ with the same remainder are in the same group. Then for any two elements in different groups, their absolute difference is not equal to $k$. Therefore, we can obtain the number of subsets in each group, and then multiply the number of subsets in each group to obtain the answer.
For each group $arr$, we can use dynamic programming to obtain the number of subsets. Let $f[i]$ denote the number of subsets of the first $i$ elements, and initially $f[0] = 1$, and $f[1]=2$. When $i \geq 2$, if $arr[i-1]-arr[i-2]=k$, if we choose $arr[i-1]$, then $f[i]=f[i-2]$; If we do not choose $arr[i-1]$, then $f[i]=f[i-1]$. Therefore, when $arr[i-1]-arr[i-2]=k$, we have $f[i]=f[i-1]+f[i-2]$; otherwise $f[i] = f[i - 1] \times 2$. The number of subsets of this group is $f[m]$, where $m$ is the length of the array $arr$.
Finally, we multiply the number of subsets of each group to obtain the answer.
The time complexity is $O(n \times \log n)$ and the space complexity is $O(n)$, where $n$ is the length of the array $nums$.
-
class Solution { public long countTheNumOfKFreeSubsets(int[] nums, int k) { Arrays.sort(nums); Map<Integer, List<Integer>> g = new HashMap<>(); for (int i = 0; i < nums.length; ++i) { g.computeIfAbsent(nums[i] % k, x -> new ArrayList<>()).add(nums[i]); } long ans = 1; for (var arr : g.values()) { int m = arr.size(); long[] f = new long[m + 1]; f[0] = 1; f[1] = 2; for (int i = 2; i <= m; ++i) { if (arr.get(i - 1) - arr.get(i - 2) == k) { f[i] = f[i - 1] + f[i - 2]; } else { f[i] = f[i - 1] * 2; } } ans *= f[m]; } return ans; } }
-
class Solution { public: long long countTheNumOfKFreeSubsets(vector<int>& nums, int k) { sort(nums.begin(), nums.end()); unordered_map<int, vector<int>> g; for (int i = 0; i < nums.size(); ++i) { g[nums[i] % k].push_back(nums[i]); } long long ans = 1; for (auto& [_, arr] : g) { int m = arr.size(); long long f[m + 1]; f[0] = 1; f[1] = 2; for (int i = 2; i <= m; ++i) { if (arr[i - 1] - arr[i - 2] == k) { f[i] = f[i - 1] + f[i - 2]; } else { f[i] = f[i - 1] * 2; } } ans *= f[m]; } return ans; } };
-
class Solution: def countTheNumOfKFreeSubsets(self, nums: List[int], k: int) -> int: nums.sort() g = defaultdict(list) for x in nums: g[x % k].append(x) ans = 1 for arr in g.values(): m = len(arr) f = [0] * (m + 1) f[0] = 1 f[1] = 2 for i in range(2, m + 1): if arr[i - 1] - arr[i - 2] == k: f[i] = f[i - 1] + f[i - 2] else: f[i] = f[i - 1] * 2 ans *= f[m] return ans
-
func countTheNumOfKFreeSubsets(nums []int, k int) int64 { sort.Ints(nums) g := map[int][]int{} for _, x := range nums { g[x%k] = append(g[x%k], x) } ans := int64(1) for _, arr := range g { m := len(arr) f := make([]int64, m+1) f[0] = 1 f[1] = 2 for i := 2; i <= m; i++ { if arr[i-1]-arr[i-2] == k { f[i] = f[i-1] + f[i-2] } else { f[i] = f[i-1] * 2 } } ans *= f[m] } return ans }
-
function countTheNumOfKFreeSubsets(nums: number[], k: number): number { nums.sort((a, b) => a - b); const g: Map<number, number[]> = new Map(); for (const x of nums) { const y = x % k; if (!g.has(y)) { g.set(y, []); } g.get(y)!.push(x); } let ans: number = 1; for (const [_, arr] of g) { const m = arr.length; const f: number[] = new Array(m + 1).fill(1); f[1] = 2; for (let i = 2; i <= m; ++i) { if (arr[i - 1] - arr[i - 2] === k) { f[i] = f[i - 1] + f[i - 2]; } else { f[i] = f[i - 1] * 2; } } ans *= f[m]; } return ans; }